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The Useless Knowledge

What is the definition of pure mathematics?

According to
Bertnard Russell, it is:

Pure Mathematics is the class of all propositions of the form “p
implies q,” where p and q are propositions containing one or more

variables, the same in the two propositions, and neither p nor q
contains any constants except logical constants. And logical
constants are all notions definable in terms of the following:
Implication, the relation of a term to a class of which it is a

member, the notion of such that, the notion of relation, and such
further notions as may be involved in the general notion of

propositions of the above form. In addition to these, mathematics
uses a notion which is not a constituent of the propositions which

it considers, namely the notion of truth.
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Anyways, this talk is not about the philosophy of either
mathematics or physics. I will mention few parallels from past
centuries (especially the last century) between theoretical physics
and mathematics. Essentially how some of thoughts of both
mathematicians and physicists were basically the ‘same’.

In recent times (mainly since the early 20th century), theoretical
physics advancements have gone through a serious play of
mathematics. There are a lot many examples of such plays but
here we will cover only a few of them - Quantum Mechanics,
S-Duality, Yang-Mills Gauge Theory and Fiber Bundles.
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Quantum Mechanics

Quantum mechanics is study of microscopic physical systems, such
as studying a Hydrogen atom. Physically, it represents the one-half
of known knowledge of physics with other half being the General
Relativity (or more generally, study of gravity).

Basically, in quantum mechanics, roughly we are concerned about
states ψ which represents a certain system. Knowing what exactly
ψ of a system is not as trivial as in classical mechanics. However,
we can know what is the probabilistic distribution of such ψ
(governed by Schrodinger equation) is over some space R.
Moreover, operators give us relevant values of numbers that we are
interested in, such as energy (by acting with Hamiltonian), position
(by acting position operator x̂), momentum (by acting momentum
operator p̂) and so on. The notion of quantization is based when
the commutation relation is established [x , p] = iℏ.
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We are also interested in interaction of more than one system,
such as entanglement between them.

In 1920s, Quantum Mechanics, was studied to explain the atom
and related physics but it was later revised with a more concrete
use of mathematics by W. Heisenberg known as ‘Matrix
Mechanics’. In nutshell, this matrix mechanics was use of linear
algebra to systematize the quantum mechanics.This can be
thought as understanding ψ as vectors and operators as matrix
functions. Then the eigenvalues to these operators would be
physical relevant quantities (like energy). These states ψ belong to
a vector space V and when we introduce the condition of
positive-definite inner product (i.e. ⟨a|b⟩ ≥ 0, a, b ∈ V ), then

V = H (1)

where H is called Hilbert space.
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The eigenvalues equations are such

Hψ = Eψ (2)

where H is the Hamiltonian of the system and E is the energy of
the system.

In quantum mechanics, these operators must be
‘self-adjoint’

H = H† (3)

where H† is the complex adjoint of H. This is necessary to yield
‘real’ eigenvalues. The eigenvectors forms a Hilbert space H of
square-integrable functions as previously described.
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There was a standard attempt to formalize the quantum mechanics
with use of more rigorous mathematics, namely of functional
analysis and operator algebra by von Neumann and Francis
Murray in their Rings of Operators series of papers.

We collect the
relevant operators which act on a Hilbert Space H and form an
algebra.

Simply speaking, on a region, let us say R2, one can associate
bounded and self-adjoint operators and this will form an algebra A.
This is famously known as von Neumann algebra (a type of C∗

algebra) if
A = A′′ (4)

where A′′ is the double-commutant of A.
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One can interpret these elements of A to be physical operations
acting on our space, in this case the Hilbert Space H.

Anyways, for any simple quantum mechanical system, the
descriptions of C∗-algebra and Hilbert Space are both equivalent.
In past few years, this has been an active area of mathematics and
physics to find the operator algebras of different spacetime and
QFTs.

Slight Remark: The classical theory that gives a quantum theory
can be rigorized in terms of Symplectic phase space and a 2-form
ω where instead of Dirac’s bracket and commutation relations, we
have Poisson’s bracket and Hilbert space is replaced by Phase
space. There we have the Hamilton’s equation

ẋ = ∂H
∂p , ṗ = −∂H

∂x (5)
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So in the simple case where Hamiltonian is

H = p2

2m + V (x) (6)

and we know
F = −∂V

∂x = m ˙̇x = ma (7)

So Symplectic Phase space is a way to understand the Hamiltonian
formulation of classical mechanics. Of course, there are other
rigorization of classical mechanics available. Check Arnold’s book
on classical mechanics for these mathematical motivations.



Yang-Mills Theory and Vector Bundles

A gauge theory is a theory which is invariant under certain ‘gauge’
transformations (or locally defined transformations). Basically, it
represents degrees of freedom of a theory that are redundant and
can be fixed. It was introduced by Weyl’s paper. An example is
changing the phase of a wave

ψ → eiφψ (8)

where H → H′ which is just unitary gauge transformation of
Hilbert spaces.

It was realized by Chern, Wu, Yang and other people in 70s that
Yang-Mills Gauge theory and concept of a fiber bundle (a principal
G-bundle) is essentially same. Let’s cover this now.
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What is a fiber bundle?

It is defined as a map π : E → M where M is the base space and
there are some fibers involved in such projections.
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A section of the fiber bundle is a continous map

s : M → E (9)

such that for x ∈ E , we have π(s(x)) = x .



Now, a principal G-bundle is defined for a fiber bundle π : P → X
where P × G → P. Basically, for x ∈ P we have xg ∈ P where
g ∈ G . (Where G is a group.)

The claim is that a gauge theory and principal G-bundle are
equivalent.

Let us recap some features of a gauge theory. In gauge theory,
there is a gauge transformation between variables like

g : A → A′ (10)

where A,A′ are gauge fields and g takes value in the gauge group.
And there is a field strength F

F = dA ∧ A ∧ A (11)
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A simple example is electromagnetism which is an U(1) gauge
theory. Where A are vector potentials and F is the field strength.

In gauge theories, we usually have a Bianchi identity, in the case of
Electromagnetism, it is dF = 0.

Now, in a principal G-bundle, a connection is defined to be maps
which take the value in the structure group G from P × G → P.

We have seen both fiber bundles and gauge theory. Both has
groups features and connections and gauge fields look the same.
Both theory has features which are identical.
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Yang-Mills theory is described as the G-bundle E → M, where M
is a Riemannian manifold. We have the curvature F = dA + A ∧ A.
The wave equation is

D ⋆ F = 0 (12)

where ⋆ is the Hodge product and D = d + A. In abelian case,
such as U(1), D reduces to d and

dF = 0 (13)

which is the Bianchi identity. This described the propogation of
the Maxwell waves. Now, for the non-abelian case we have

D ⋆ F = 0 (14)

and the waves are nonlinear.



Similarly, GR is described in vacuum by

Rµν = 0 (15)

which describes the hyperbolic waves. Means that they are
evolution to the Cauchy initial data.

In GR, we have collapse of spacetime. And the lightrays cut off.
The situation in the quantum gravity is hard because of this only.

For gauge group G = U(1), we observe classical solutions of
Maxwell’s equations all the time – light waves. For nonabelian G,
even though there are beautiful nonlinear classical wave equations,
we do not observe these nonlinear classical waves in practice. That
is actually because of a phenomenon known as the mass gap.



Let me reproduce a simple dictionary, also called Wu-Yang
dictionary.
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So basically, a gauge theory is equivalent to the fiber bundle
mechanism.

Here is the conversation which Yang had with Chern
in 1975

“When our conversation turned to fiber bundles, I told him
that I had finally learned from Jim Simons the beauty of
fiber-bundle theory and the profound Chern-Weil theorem.
I said I found it amazing that gauge fields are exactly con-
nections on fiber bundles, which the mathematicians de-
veloped without reference to the physical world. I added
‘this is both thrilling and puzzling, since you mathemati-
cians dreamed up these concepts out of nowhere.’ He im-
mediately protested, ‘No, no. These concepts were not
dreamed up. They were natural and real.”
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S-Duality

Now, we will come to the last part of our talk which is S-Duality.
It was a duality found in String Theory by Sen, Seiberg, Witten
and others.

Dualities in string theory play very crucial roles to
understand different vacuas and how one theory works in a
different regime.

All five kinds of String Theories - Type I, Type IIA, Type IIB,
SO(32), E8 × E8 are essentially the same in different limits of
M-theory.
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A duality is a correspondence shared by two different theories. In
mathematics, the Galois theory is a form of duality. We can take
an easy example of T-duality found in string theory.

Just like this, we also have an equivalence between coupling
constants α and 1/αwhich is the S-duality. Which is close to the
statement of Dirac’s quantization condition e ⇔ 1/g .
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What is found that it has to do with the modular group SL(2,Z),
and the modular forms are just the holomorphic functions that
transform under this (sub)group.

The same group is also found in
S-duality in string theory, which can ‘naively’ be interpreted as
electric-magnetic duality.

This can be found in works of Sen, Witten-Kapustin,
Goddard-Nuyts-Olive and Monotonen-Olive.
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A word on Langlands Program

Langlands program is a wide program throughout mathematics
that relates the area of representation theory and automorphic
forms to Galois theory. One of the many Langlands duality is called
Geometric Langlands Duality, which is useful in theoretical
physics, especially in string theory and conformal field theory.

The statement bowls down to the fact that a (quantum) field
theory defined using a group G is equivalent to its Langlands dual
GL. Electric-magnetic duality is a similar statement (given by GNO
paper) that G and GL describe the electric and magnetic charges.



The Connection

We can argue that electric-magnetic duality is just another
(lighter) reformulation of geometric Langlands duality. In fact,
geometric Langlands duality provides a rigorous definition of
mirror symmetry, which, in turn, defines these dualities in a way
that can be understood.

This also provides a way for theoretical physics to learn from
algebraic geometry, representation theory, number theory, and
category theory and to cultivate a ‘common’ tongue between
mathematicians and physicists.
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A Bridge between Mathematics and Physics

What we have discussed so far in this talk is how some of the
physics were basically mathematics and vice-versa. This depicts
that most of us who work in isolated zones actually do the right
work and somehow physicists do the work of mathematicians and
sometimes the role reverses.

Right now, the hottest part of the mathematical physics is
Supergravity and Langlands Program. However, this is my view.
But one thing can be realized that discussions between
mathematicians and physicists must be held in order to learn what
is happening in the other part of the field as it is evident that
sometimes it is just one word written in two different languages.
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“The most powerful method of advance [is] to perfect and
generalize the mathematical formalism that forms the ex-
isting basis of theoretical physics.” - P. Dirac

Thank you for listening.


