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ABSTRACT. These notes are written on the (realistic) string compactifications and
the string de Sitter vacua problem. A lot of unanswered questions remain in these
regime which are highlighted using a historical canvas and exposition. We discuss
also the KKLT proposal and other recent discussions around if there is a de Sit-
ter vacua? In the exposition, we review the Calabi-Yau manifolds, supergravity
compactification, flux compactification, moduli stabilization, and all that.
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1. INTRODUCTION

Supersymmetry is one of the most controversial topics of online media and we
should likely ignore them. SUSY is needed to expand the Standard Model which
can possibly solve the issues like hierarchy problems and dark matter. The possible
candidates are the Minimal Supersymmetric Standard Model (MSSM) [2] or the non-
minimal Supersymmetric Standard Model. However, supersymmetry is not observed
in our four dimensional world which means that it is broken at this level. For one do-
ing realistic' compactification, they must have supersymmetry broken upon compact-
ification. After compactifying, let’s say an 11-dimensional supergravity (SUGRA), to

IThis word has a meaning and understanding of its own in these contexts.
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a four-dimensional spacetime, the other extra seven dimensions become ‘microscopic’
in the sense that it is not observed by us, this is called ‘spontaneous compactifica-
tion’ [3]. Additionally, we have metastability conditions in supersymmetry.

The goal of any compactification is to achieve the following.

e Solve the generalized Einstein’s equations in string theory
e Contain the standard model SU(3) x SU(2) x U(1)

Of course, we have obtained tons of theoretical examples of such compactifications
found in the literature. Not all of them are realistic or even mimic our real-world sce-
narios. But some of these are phenomenolgically interesting too, at least historically.
We discuss some of them in our paper, too.

The general idea of a compactification is to take our manifold, let us say 10 dimen-
sional Mg, which solves the Einstein’s equation. We can introduce compactification
as

Mlo = ./\/l4 x K (1.1)
where M, is our effective four-dimensional theory and K is a special manifold called
the Calabi-Yau manifold. The reasons why K is a Calabi-Yau manifold are many,
but they are of holonomy SU(n) which is important for us. We explain these later
in the notes explicitly. In fact, Calabi-Yau manifolds are the favorite mathematics
of physicists. They yield very rich ideas of theoretical physics like Mirror symmetry
and so on.

Anyway, in doing this compactification, we typically choose a Calabi-Yau manifold
K, in this case, say, six-dimensional, with a symmetry group G and SU(3) x SU(2) x
U(1) C G because after compactification My should contain U(3) x SU(2) x U(1).

Supergravity solutions emerged as a good way of doing quantum gravity problems.
The compactification of 11D supergravity was a classic one as an example. In fact,
eleven dimensions are the maximum where one can have supergravity and valid spin
2 gravitons and not more [4].

Superstring compactifications are more general and richer than supergravity com-
pactification. The general hunt (or softly, quest) has been to find why string theory
is not observable in our world. The reasons include the breaking of supersymmetry
in our world and also that the extra dimensions in string theory are microscopic and
as famously written in scientific literature, hidden. The five kinds of string theories
are just the same theory in different limits of M-theory. These are type I, type ITA,
type I1p, Eg x Eg and SO(32). The last two are called heterotic string theory. From
a compactification perspective, the heterotic string theories and type II theories are
more promising. Eg x Fg case” and type IIB has been explored in literature in a more
realistic sense than the others, with type IIA getting a little attention relatively. K

In the Eg x Fg, we embed the SU(3) in the subgroup SU(3) x Eg and the other Eg become a
hidden sector. More on this has been discussed in Sec.2.3.
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having SU(3) holonomy makes it special to be used in string compactifications as
well.

Moreover, during compactification, there are scalar fields that are introduced and
are massless. This creates a theory with many massless fields that plague our theory.
To fix these, we introduce the fluxes in our theory. These fluxes are given by 2-form
gauge potentials H and F' and the 3-form field strength. The magnetic fluxes, for

say type IIB
/ H, / o) (12)
K K

are non-vanishing. Thus a Dirac quantization is established here between electric and
magnetic charges. These can be combined into a three-form flux G35 = F;—71H3 where
T is a complex axiodilaton (explained in Sec. 2.3). Moreover, G3 is an imaginary
self-dual (ISD) which means that *G3 = iG3 which are helpful for preserving the
supersymmetry and keeping the structure of the Calabi-Yau manifold preserved in
these flux compactifications. This is done by introducing a superpotential W .

All of these are done to stabilize our moduli fields (massless scalar fields) by which
we mean that they gain mass. Now, the superpotential has a contribution from fluxes
which is called flux superpotential Wy, as well as a non-perturbative superpotential.
The reason for introducing the latter is as follows.

There are three types of moduli fields: complex structure moduli (that comes
from the complex structure on K), Kahler moduli, and then the axiodilaton 7
(which is related to the string coupling). We wish to stabilize these moduli. Intro-
ducing a flux superpotential Wy,

me:/ Gy A Q) (1.3)
Kg

where (2 is holomorphic (3,0) from Calabi-Yau manifold K. This flux superpotential
stabilized the axiodilaton and complex structure moduli. But at the tree level, Kahler
moduli do not get stabilized due to the no-scale property. For this, we introduce the
non-perturbative superpotential W,, which becomes important to stabilize all the
moduli. They are also important from the perspective of Dine-Seiberg problem [5].
We discuss this in detail later.

To say that we have understood string compactification would be an exaggeration,
especially in the de Sitter case. Because for the AdS we obtain the vacua. In de
Sitter, there is a classical no-go theorem [6] about de Sitter vacua in string theory.
This is why quantum corrections and non-perturbative corrections are necessary for
the de Sitter solution to exist. But at the classical level, there cannot be a de Sitter
solution.

There is an idea that one can take the AdS vacua and then uplift the theory
using anti-D3 branes which will create a positive scalar potential. A very famous
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example of this is the KKLT mechanism [7] which uses non-perturbative corrections
to stabilize all the moduli and get a de Sitter vacua solution.

While KKLT is a famous example, it is not a general idea yet. The sociology
around de Sitter’s solution and if it exists is diverse. With the Swampland Pro-
gram [3] getting introduced, the phenomenological part of the theory has been given
attention using a set of conjectures about quantum gravity with each quantum grav-
ity falling into landscape or swampland. A theory in the landscape would mean that
they satisfy these fundamental conjectures about quantum gravity while with the
opposite being true, they fall into swampland. The question becomes, now, if de
Sitter solution belongs to swampland or landscape. There are multiple arguments
on both sides.

In this paper: We introduce the Kaluza-Klein compactifications in Sec. 2.1 which
was historically introduced to unify gravity and electromagnetism. We then discuss
the low energy limit of supergravity compactification with D = 11. We also explain
how a seven-dimensional Calabi-Yau is needed for such compactification. We also
explain the need for Rarita-Schwinger fields which replace the Dirac operators in
11D supergravity.

We discuss the string theories and their compactification in Sec. 2.3. In this
section, we also discuss a lot about Calabi-Yau manifolds and their special properties.
We then discuss the Freund-Rubin compactifications and fluxes. Sec. 3 is about
moduli stabilization and flux compactification where we discuss the moduli space.
We take the example of type I1B to discuss the flux compactification and moduli
stabilization. We discuss the superpotential there within. The section also contains
brief discussions of Dine-Seiberg runaway argument and Maldacena-Nunez no-go
theorem. In Sec.3.5, we introduce the anti D3 branes and uplifting to obtain the de
Sitter solution. Other helpful notes and reviews include [9—14]

In Sec. 4, we discuss the KKLT solution which is obtained by uplifting the AdS
vacua from type IIB using anti D3 branes. We have also included a few computations,
all at first order and without correction to provide a typical idea of vacuas, potential
and uplifting. Finally, in Sec.5, we discuss the sociological viewpoints on if there
exists a de Sitter solution or not.

Moreover, there is an Appendix. A which contains a mathematical discussion about
Calabi-Yau manifolds. We discuss some of the motivations regarding the use of these
complex manifolds in theoretical physics, especially in mirror symmetry. A future
version might contain appended content in this appendix.

2. STRING COMPACTIFICATIONS

The starting point for our discussion is to talk about compactifications and super-
gravity. It is first important to understand the sense in which we want to perform
compactifications. Now of course, having D > 4 dimensions is not unexpected, as
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hinted naively from something as simple as the theory of bosonic string theory Sp
requiring 26 dimensions + tachyonic problems. In a supersymmetric theory, this
becomes resolvable; indeed, adding a fermionic contribution Sy to the bosonic
string action Sp + Sy would be a theory with no tachyons taking the GSO projec-
tion. This 10-dimensional theory is a good description of a theory with bosons and
fermions, but you are still left with the problem of “where do the other 6 dimensions
go?”

In the Kaluza-Klein theory, which we will revisit below, one has a D = 5 theory
for which we want a D = 4 compactification. The mathematical argument for this
is that the compactification K is a fibration of the manifold Mp into a compactified
manifold My, since we want that as the low energy limit:

K:Mp= Myx K%, (2.1)

and we would typically have conditions over the nature of K°, such as Ricci-flatness
or the moduli for the compactifications, as we shall see later. The essential idea is
that in superstring theory, we want to describe a low energy effective limit ona D = 4
manifold My, with the additional dimensions compactified onto a suitable D = 6
manifold Kg. While we will talk about these compactifications in detail in section
2.2, we will briefly recall how these compactifications work superficially below.

We want a theory of G 4p(gp, ®p] with some® limit compactification to a theory
G w94, @4], which is our usual Einsteinian GR. So we end up with something like

8D = 94 X gp—4

and then the question becomes, how would you know which compactifications yield
the right so-and-so limit? Here, you would start by taking the full Einstein-Hilbert
action for the D dimensional theory and split the metric into an ansatz.

2.1. Kaluza-Klein compactifications. The first step towards paving the way to-
wards compactifications was from the Kaluza-Klein theory, which unified gravity and
electromagnetism in D = 5. In order to describe the metric in this geometry, we will
split it into the usual 4 dimensional components and an extra component:

9AB ~ Guus (2.2)

where i and v are the usual 4 dimensional components and 5 is the extra dimension.
The geometry we are working with is essentially

M, x St

where S! describes the compactification onto a circle of radius r. That is, we have?
5

2% ~ a5+ 277,

3This will be covered later in section 2.2, but for now we will remain ambiguous as to what it
means.

4Note here that we take w,v =0,1,2,3 but x° instead of z* coordinate component for making
things easier.



The general 5D metric ansatz is that you take
dgAB NgW—FA#—F(I)BD , (23)

where A, are the U(1) gauge fields and ®pp is the Brans-Dicke scalar. In what
follows, we will simplify this to be a simple collection of fields ¢, but the general
meaning should be taken to be the above decomposition.

The metric can be written as
L+ ?ALA, PPA
gAB = (gu ¢2¢AV a ¢¢2 M) . (24)
The usual Einstein-Hilbert action follows with the additional coordinate:

1 4
167TGN/R V=g d xdy .

SEH =

The field equations for this metric can be solved to give the Einstein equations
G = k¢°T,, (2.5)

plus an additional vanishing covariant derivative condition on the field strength ten-
sor, I, = 0, A, — 0,A,. The expanded field equations would then contain the G,
equations in terms of the modified stress tensor T),,. These can be computed by
finding the usual Christoffel symbols in terms of the 5D metric g4p, and expanded
into the field equations. Before proceeding though, one remark about the so-called
“cylindricity condition”.

The cylindricity condition assumes that

9B
dy

where we are essentially saying that the theory is only dependent on the usual x*
coordinates. On relaxing this, one would get more complexity in the field equations
and would have to compute the Christoffel symbols and the Ricci tensor for the theory
in terms of additional fields added into the theory. On top of this, we also assume
the vanishing Ricci condition so that R4 = 0, due to which the field equations
decompose into restricted vacuum solutions.

~0, (2.6)

The field equations then reduce into two sets of equations; the first would be the
Einstein tensor in AB components and the second would be computed from the Rss5

components, which become
3

o = ZFWF‘“’ : (2.7)

One thing about the conditions we have so far is that the theory has cylindricity.
One way to circumnavigate assuming this condition is to take the y terms into
compactified geometries that have a very small radius. That is, compactifying into
M, x S}, we will take the space to have topology R* x S with a very small radius.
Since our theory is taken to be the usual 4-dimensional gravitational theory with an
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additional gauge field, we have really two couplings that appear in the action, one
for the usual G and the other the gauge coupling. In a physical theory, we expect
these extra dimensions to live in a compactified space of radius of order of Planck
length.

Extending this to higher dimensions (that is, for compactification of more than
one extra dimension), we use a similar argument, where we take a 4D manifold M,
and we compactify the higher dimensions onto some Kp_4. For superstring theories,
we expect the low energy and weak coupling limits to reduce into the usual 4D
Einsteinian gravity plus these extra dimensions compactified onto Kp_4 with specific
constraints imposed on them. In doing these compactifications, one would typically
encounter the moduli for the compactifications, which are parameters that serve
as characterizing the theory. To see an example of this, we will consider a Kaluza-
Klein compactification similar to what we saw before, extended to D dimensions, and
notice that taking a family of scalar fields ®,, in compactifications, there are different
uniquely specifiable metrics that come along with a family of scalings parametrized
by n. That is, the choice of ®,, gives a unique compactification for the same theory.
Consider also that these compactifications require additional data called fluxes, which
we will discuss next. In this fashion, a compactification is a family of parameters
that includes the full theory, the 4D manifold M, °, the fibration manifold Kp_4,
the moduli and the fluxes.

It is also important to be clear that the Kaluza-Klein procedure that we discussed
above is not restricted to 4 + 1 dimensions. Indeed, as we shall see below, we will
take the full compactification to be like

M4+x X Kn )

so in general the theory does not have the usual U(1) gauge field only , but rather a
collection of massless fields along with the “external” fields that compose the moduli
in the theory.

The overall compactification of the theory depends on the moduli like said before.
In this sense, we would take metrics g with scalings by some A, which here play the
role of the moduli. The collection of all such gy forms the moduli space .# , which is
essentially the theory space of all the metrics scaled by these families of parameters.
For reasons that we will explain later, we will choose gy to be Ricci flat metrics,
and the primary interest of compactifications would be with Calabi-Yau threefolds,
which we shall discuss in the next subsection. But a general idea is that taking some
Ricci flat metric g, scaling by A will still give you a Ricci flat metric and is, therefore,
a moduli parameter. Since these metrics always are specified as a general family of
metrics rather than a particular solution, these moduli spaces heavily discretize the
resulting compactifications, and the problem of moduli stabilization will be treated
with heavy importance. In the 5D KK example taken above, the moduli were simply

5This typically also comes with a cosmological constant A for AdS, Minkowski or de Sitter spaces,
the last of which as we shall see is a rather complicated field.
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the collection of ¢ and the corresponding compactifications radius r which is also a
parameter that is chosen carefully.

2.2. Low energy limit of Supergravity compactification. Let us begin with the
classic compactification of supergravity in 11D. Eleven dimensions is the maximum
no of dimensions that one can have in supergravity since dimensions greater than
11 would contain massless particles of spin greater is two which is not possible for
a consistent field theory coupled with massless particles [1]. The goal would be to
get SU(3) x SU(2) x U(1) as the symmetry group in our compacitification to call
it realistic. And the group SU(3) x SU(2) x U(1) contains the symmetry group of
Standard model. In fact, the goal behind doing these (supergravity or superstring)
compactifications is two-fold:

e These compactifications should solve (generalized) Einstein’s equations in
string theory.

e These compactifications should be consistent with standard model observa-
tions which are based on SU(3) x SU(2) x U(1).

Now, we find that the minimum number of dimensions required of a manifold
containing the symmetry group SU(3) x SU(2) x U(1) is seven® [15]. In fact, eleven
dimensions is a perfect way to do supergravity compactification, since 7+4 where the
latter 4 represent our non-compact space-time dimensions and also 11 is maximum
number of dimensions where we have supersymmetry.

So it is almost a perfect example of the eleven-dimensional supergravity through
which we can obtain the symmetry SU(3) x SU(2) x U(1). Hence, we will use this
maximal eleven dimensional supergravity as a case now.

We can argue that the gauge symmetry group SU(3) x SU(2) x U(1) is the largest
group that can be obtained by the Kaluza-Klein compactification. A very simple
example is to consider CP? x S? x S! whose minimum dimension is seven as men-
tioned. But there exist many manifolds with the same property. To find the number
of dimensions, we can calculate dimG —dimH (also G/H) where dimG is the dimen-
sions of SU(3) x SU(2) x U(1) and H is the ‘maximal’ subgroup of G. The maximal
subgroup’ is SU(3) x U(1) x U(1) and dimH = 5. And dimensions of the symmetry
group SU(3) x SU(2) x U(1) is 12, so dimG — dimH = T.

An example like C'P? x S? has full symmetry group SU(3) x SU(2) x SU(2) which
is larger than our symmetry group SU(3) x SU(2) xU(1). Another example is S° x S?
which has full symmetry group as O(6) x SU(2) which is also larger than our gauge
group. We can not find any other example, in this scenario of eleven-dimensional

A simple way to see this is that U(1) can at least correspond to a one dimensional circle, SU(2)
to a 2-sphere and SU(3) to a C P?which has four dimensions.

"Actually there would be three factors of U(1) which would generate SU(3) and SU(2) and a
factor for itself. But we eliminate one factor [15].
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supergravity compactification, with a symmetry group larger than the gauge group
SU(3) x SU(2) x U(1).

Let us say that we are doing a compactification
My x K (2.8)

where K is a seven dimensional manifold with the symmetry group G' and SU(3) x
SU(2) x U(1) C G. We just saw some examples of K and there could be many more
examples for K. These K would be our general type of simply connected manifolds.
For example, CP? x S% x U(1) itself, or (S° x $3)/U(1). Actually, the nature of the
two mentioned manifolds are a little bit different mathematically. The paper [15]
contains more elaborate examples.

Now we wish to understand the massless leptons and quarks which should arise in
the theory of Eq. 2.8. Actually, they are not massless and they acquire a mass only
through the Higgs mechanism®, which will also be a needed feature in our theory. A
very starting problem is that the Dirac operators will not yield us massless modes
other than four dimensional theory. This is because the Dirac operator P for extra
dimensions contain only massive fermions. Instead we need massless models which
corresponds to the eigenvalue of .

A good substitute for this might be Rarita-Schwinger fields 1, of spins 3/2 (also
called gravitino fields) replacing the Dirac field of spin 1/2 as there is no spin-half field
in 11D supergravity. Because of the positivity of the Dirac operators, we do not much
zero modes, however, Rarita-Schwinger operators do have a wide set of zero modes.
Even though Rarita-Schwinger fields are of 3/2 spins, in four dimensional world, they
act as 1/2 spins. Precisely, 1, with components ¢ > 5 has spin 1/2 fields. So, the
Rarita-Scwhinger equation of higher dimensions will yield us the massless modes of
spin 1/2 upon the compactification. The most important thing to remember is that
the left-handed and right-handed fermions transform differently in a gauge theory.”
Moreover, we need to find a Higgs vacuum for which the v.e.v. spontaneously breaks.
And other important matters of such a realistic compactification includes a vanishing
cosmological constant, CP violation, and so on.

The case of N =1 is a nicer one than N’ > 1 because of the obvious phenomeno-
logical reasons. If one wishes to a mathematical exploration, then, nonetheless it is a
very exciting subject for to look for A/ = 2 and so on. Especially to understand the
algebraic geometric point of view of the compactified manifold K. But, do we want
to preserve the supersymmetry in M,? The answer is yes, in this context, where
the fermions modes are absent and supersymmetry can verily map the right bosonic

8More appropriately, from the spontaneous breaking of SU(2) x U(1) to U(1) which is needed
for the gauge bosons and fermions to acquire the mass.

9This is one of the reasons why N > 2 is not really helpful for a realistic compactification since
they have right-handed and left-handed fermion modes tranform in a same way under the gauge
theory. The best possible case is N = 1 supersymmetry.
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D = 10 Superstring Theory
D = 11 M-Theory

Reduce Dimensionality

Producing SM

D = 4 Theory

FIGURE 1. The goal of these compactifications is to produce a low-
energy effective theory of physics that contains a standard model and
solves Einstein’s equations.

modes to their corresponding fermions. Before we switch to other types of compact-
ifications, other than supergravity, let us look at a compactification of D = 11 and
N = 1 supergravity to a D = 4 AdS times a S” whose isometry group is SO(8). The
resultant compactifications has a N = 8 supersymmetry in effective theory D = 4.
S7 has interesting properties such as ‘triality’.'® An interesting isometrically embed-
ding of S7 is in HP?, instead of taking just R®. Now, when one does a ‘squashing’
of the S7, one has non-zero v.e.v for the scalar fields and Higgs mechanism. The
group SO(8) breaks further into SO(5) x SU(2) and the N' = 8 reduces to N’ =1
supersymmetry. The holonomy is Go. See [16—18] for relevant discussion on this.

2.3. Superstring compactification. So far we have dealt with supergravity and
more on the supergravity compactification can be found in [18]. Now we will switch
to a discussion of superstring compactification and realize how they are connected
to supergravity in D = 11 which we have just discussed.

There are five broad categories of superstring theories: Type I, type ITA, type 1IB,
Es x Eg, and SO(32). The last two are called heterotic string theories. There is also
one more kind of string theory, called M-theory which exists in D = 11 and is known

10T his has its own significance and interesting feature which we do not discuss but see [16].
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to be 'dual’ to every other string theory [15]. We will first discuss compactification
for string theory which is anomaly-free.

The first example we would like to discuss is heterotic string compactifications.
Our goal for these compactifications is still the previous ones (see Fig. 1). A very
classic example was provided in [19] which was also the first time when requirements
of the manifold K were taken in, in the form of Calabi-Yau manifolds. As we noted
earlier, cancellation is required for a realistic theory. The theory of Eg x FEg and
SO(32) does have the anomaly cancellation [20]. We require that the compactifica-
tion has a realistic mass spectrum, as argued in supergravity case. That also includes
a realistic fermion number. Additionally, we will keep the N/ = 1 supersymmetry
unbroken at the compactified scale. The reasons for which will be clear in some time.

Let us again take a theory My which has a gauge group Eg x FEg. We wish to
compactify this now as
M4 x K (29)
where K will be our internal manifold. We will reiterate our requirements for K in
a moment. The requirement for My is that it is the maximally symmetric solution.
At low energy, Eg x FEg breaks into a couple of Ey. After choosing a non-trivial
connection under which FEjg is not invariant, Fg is spontaneously broken into FEj
which is more apt. So the standard model will be contained in a single Fg and the
other Eg will be called a hidden sector. As we will argue the K will be a Ricci flat
and Kéhler manifold. Also, for gauge group Eg, the holonomy of K is SU(3). The
reasons for a Kahler structure are provided by the fact that the field strength 3-form
obtained from the super Yang-Mills theory H vanishes [19,21]. Moreover, K will be
a compact coset space.

K has holonomy SU (3) which is special. A manifold (complex) with the holonomy
U(3) is called Kéhler."" When in a Kihler manifold, any line element can be written
in terms of a Kéhler potential. The spin connection of six-dimensional K is O(6) at
start which is isomorphic to SU(4) whose two spinors are decomposed in SU(3) as

4p4=303d1ad1. (2.10)

The spin connection of K is actually SU(3) x U(1). This means that we must
choose a Kéhler potential so that the U(1) part of the spin connection is set to zero.
In the 1950s, Calabi [22] argued that the spin connects of K will be SU(3) if we
choose a Kéhler metric carefully, to eliminate the U(1) part. This is done by first
defining a field strength F),, of the U(1) group and then taking a two-dimensional
closed surface X in K

Ix = / dS" F,, (2.11)
S

HWe will not be going into much complex geometry details but Kéahler manifold is equipped
with a Kéhler form (which is also mentioned somewhere above) and a hermitian manifold is called
Kéhlerian manifold if the Kéhler form is closed (dH = 0). The second Betti number of (compact)
Kéhlerian manifold is positive. We will discuss some of these details in appendix A.
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and now when Iy = 0, the field strength vanishes. Iy = 0 is equivalent to saying
that there is a vanishing first Chern class'? for all the two-dimensional X. So, we
get the SU(3) holonomy for our Kéhler manifold K if the first Chern class vanishes.
This is then a classification of compact Kahler manifolds and will be necessary for
our purposes. We note that the first Betti number is also zero for K.

Now let us see why Eg x Ejg is more phenomenologically realistic than the O(32)
heterotic gauge group. The holonomy of K is SU(3), as we have noticed many
times. We also have a condition that will preserve the supersymmetry, i.e., unbroken
supersymmetry. The SU(3) holonomy is then embedded into the Eg x Eg and the
spin connection to the gauge group. In the embedding of SU(3) in the O(32) theory,
the theory does not give any good predictions. The reason is simple: the only
subgroup that will commute with the SU(3) in O(32) is U(1) x O(26) and we have
seen the U(1) vanishes for the vanishing of the first-Chern class in K. Then only
the representations of O(26) will be considered and they consist of only real vectors.
For this reason, we will only consider for a while the Fg x Eg case. The embedding
of SU(3) is done in the subgroup SU(3) x Eg of just one copy of Eg. We can ignore
the other Eg and call it a hidden sector. Now, this model is more realistic [26] and
follows every criteria (U(1) cancellation, unbroken supersymmetry, and embedding
of SU(3)) mentioned in [19]. We will not get into the phenomenological details of
this compactification, lest it is useful as it gives 27 and 27 representation of .
The overall takeaway is that the embedding of the spin connection breaks the gauge
group of one Eg to Eg. The other Eg acts as a hidden sector (which has its own
speculations and interpretation that we will not discuss in this paper). This then
gives a GUT and N = 1 supersymmetry in 4D [19]. In this theory, the GUT scale
and Kaluza-Klein scale are the same.

The above presentation only gives up the one generation of leptons and quarks.
Moreover, adding more generations becomes a task of defining a more precise Calabi-
Yau manifold [27].

We have seen the heterotic string compactification so far. The study of type I1
compactification requires more tools like branes and moduli stabilization which is
our next stop.

2.4. Freund-Rubin Compactifications. We will now talk about Freund-Rubin
compactifications [28] as an example of the KK compactifications extended to higher
dimensions and D > 5 compactifications. In order to talk about these, we will first
give a very naive overview of fluzes. We will give a more detailed discussion in the
next section. These help in moduli stabilizations, a discussion of which we defer here.

12Chern class is a characteristic class. Simply, it is used for classifying the spaces of the unitary
group. A first Chern class is here basically a two-form associated with the U(1) group. One can also
define the second Chern class (represented with a four-form) and the third Chern class (represented
with a six-form), see [23,24] or [25].
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The natural definition of fluxes is to take a compact n-manifold ¥ and a field
strength F), and define

@:/EFR. (2.12)

This naturally follows from ordinary electrodynamics where you take compact
sections of the usual D = 4 spacetime and have a 2-form F; that gives the field
strength. In the RNS formalism for string theory, we can take the NS-NS sector and
the associated Kalb-Ramond field strength By. The NS-NS flux here would be

We typically have fluxes like
Fn+1 - dOn y (214)

where C,, is (1) odd-degree for type ITA theories, so Cy,C3,Cs, ete., and (2) even-
degree for type IIB theories, so Cy, Cs, Cy, etc.

In Freund-Rubin compactifications, we take the magnetic fluxes on a 2—sphere
that stabilizes the compactifications, in the following sense. Taking g to be the genus
and the corresponding Euler characteristic y, the case with the 2—sphere we take is
g = 0. In the scenario we are dealing with, we take a moduli field R and an associated
positive curvature for which the effective potential V,g becomes negative. Taking the
magnetic fluxes though, one can “stabilize” the negative curvature contribution —
yielding the Freund-Rubin vacua. In general, the potential V' scales approximately

like )
1 (2g—2 N
Vo~ i ( 72 + ﬁ) ; (2.15)
where the 1/R? factors are due to Weyl rescaling.

The effective potential discussed above describes the full potential contributions
at both a classical and quantum level. One reason we worry about these things is to
address phenomenological issues with massless scalar fields, which form a part of the
compactification data. We will discuss these in greater detail later, especially when
we take explicit constructions of the compactification data for more realistic models.

The flux compactification discussed above is a major simplification from a string
theoretic perspective. For that matter, the compactification data can be made to be
more inclusive of realistic moduli + fluxes + orientifolds on manifolds with g # 0.
For a ¢ = 1 manifold — T? — one can include D-branes and m orientifolds (which
contribute to negative T') on p € T?, so that the overall contribution scales roughly
against —n/R*. Including these O3 planes typically is characterized by the inclusion
of Calabi-Yau manifolds or “threefolds”. The next subject of our discussion would be
extensively on moduli stabilization, including fluxes and D-branes in string theory.

Suppose we start with a type ITA theory. The dilaton field ¢ determines the string
coupling constant g and the volume R for K4 are the two main moduli for the theory,
which will also include D-branes and O-planes or orientifold-planes. For now, we will
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not discuss stringy perturbative corrections to g or any instantons. To this theory,
one has several fluxes — namely, the full flux terms come from RR fluxes F;, and NS
flux Hs. Again, we would just have to take the units of each flux and determine
the number of the orientifold planes — how this is done will be explained later. As
before, we would take a large number of fluxes similar to the Freund-Rubin model
above and one can similarly find the value of N units of the RR fluxes for which the
effective potential would yield a vacua.

We will quickly emphasize that this balancing of D3-branes, for instance, with
O3-planes is a delicate balance. In .Z, each point gets “stabilized” by balancing the
overall fluxes with the D-branes and O-planes. However, in doing this, we end up
encountering the tadpole conjecture in the swampland (which we will later discuss in
the EFTs discussion) program, where we want the full flux charge g; to stabilize the
moduli but we have to take in the charges from the D-branes and O-planes. This
is technically a discussion in F-theory, where one has the tadpole conjecture, which
states that the F that stabilize CY 4-folds will actually add to the D3-brane tadpole.
This discussion will be less enigmatic later on, but for now, it suffices to understand
these as being issues to tackle when we encounter moduli stabilization KKLT de
Sitter vacua and more formally, the KKLT de Sitter vacua.

So the full picture is as follows. You have a theory where you have fields (to be
acknowledged as dilatons), the couplings, the D-branes, and the orientifolds and a
necessarily fixed limit on a 4D manifold, for which the external manifold Kj for
instance, is to be found. For this, we have specific conditions like flux compactifica-
tions, moduli stabilization, and Ricci flatness criteria. Any such theory reduces to an
overall action that is sourced from such fields and field strengths. As an example, for
a type ITA theory, you have compactification data that are built of RR and NS-NS
sectors, the D-branes and fluxes, orientifolds and the corresponding Kg to build the
overall 10D action. This of course could be written more explicitly by taking each
contribution, but for convenience purposes, we will fix the flux terms into F, D-brane
contributions into D and orientifold planes into O. The goal of compactifications is
then to fix these to yield physical vacua.

3. MODULI STABILIZATIONS AND FLUX COMPACTIFICATIONS

3.1. Moduli Spaces. Now, we will look into the moduli spaces, more specifically
to the cases we have been discussion. Then we will need a few extra machineries to
describe a more quasi-realistic theory.

A moduli space .# (which is not same as M which is used to denote the manifold)
consists of the scalar fields solutions which are given by the action of the deformation
of a metric g of K which preserve the Ricci-flatness. (It can be also called a classifying
space of the Ricci-flat metrics.)
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We are generally interested in understanding this moduli but since it has a lot
of vacuas (possible candidates), it is generically a problem. We will discuss some
possible ramifications that could be possible in the next bits of the paper.

Locally, a moduli space M looks like
M= My X Mc (3.1)

where #5 is associated with the Kéhler structure deformations of the metric and
M is the moduli space associated with the complex structure deformations. The
former kind of structure deformations dominates the effective theory of low energy
and the gauge couplings at tree level in N' = 1 type IIB compactification. While
the former, .#¢, for the type ITA. Once can also relate the Betti numbers b? and b
of K with .# and .#, respectively. We have already seen the first Betti number
of the manifold K should be zero. Betti number b* and b® are non-trivial for K (see
Appendix. A for some more discussion.)

Let us take an example of the moduli space .#. A Calabi-Yau manifold with
holonomy SU(n) has complex dimensions n. We have been considering a Kéhler
manifold with the holonomy SU(3), so the manifolds of interest are the Calabi-Yau
three-folds. There are many examples of the Calabi-Yau three-folds that appeared
after a good amount of works in algebraic geometry and theoretical physics, for in-
stance, see [29]. We also mentioned some of these constructions, from physics point of
view, in section. 2. Counting Calabi-Yau three-folds has been an interesting problem
in the theoretical physics and algebraic geometry. The Betti number of the mani-
fold corresponds to the Higgs field, so constructing these examples require a thought
about phenomenology. Most examples comes from the complete intersections in
higher-dimensional toric varieties [29-31]. For example, the complete intersection of
two hypersurfaces of degree 3 in P%. A very typical example is to consider a quintic
hypersurface in P*. One can take these smooth projective spaces and compute the
Hodge numbers, and then Betti numbers. The Betti numbers also correspond to the
moduli space, in this context a Calabi-Yau three-fold, of K. The dimension of the
moduli space .# of a quintic hypersurface in P* is given by first mentioning that
there exists 126 coefficients in the quintic polynomials. Now, the automorphism of
P* is given by PGLs(C), so these 25 coefficients would be redundant. One then is
left with 101 dimensions'.

The moduli space gives you a good way of understanding EFTs in the sense of the
swampland distance conjecture, where if take two points x,y € .# with increasing
geodesic distance s — 0o, you get an exponentially massless infinite tower of modes
that goes like

M ~ mexp(—\s) . (3.2)
One reason why this is important is because the de Sitter vacua program, gives you
a swampland constraint. The AdS version of this contains a constraint where the
scaling in vanishing A limit is m ~ \/W when taking supersymmetric AdS vacua.

I3Whenever we write dimensions, we will mean complex dimensions unless otherwise stated.
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Similar constraints in de Sitter are of interest. See, for instance, [10] for a good
discussion on such aspects of the swampland program.

3.2. The case of Type IIB. We briefly talked about the fluxes that appear in
closed string theories (Type II and Heterotic string theories) in Sec. 2.4. Now we
will be discussing how these fluxes and compactification of the theory gives us more
‘nice’ solutions which are non-vacuum solutions. The need for this is that vacuum
solutions, as we have seen above, are not really apt for defining our world and they
are plagued by a moduli space and unbroken supersymmetry. As our world has a
broken supersymmetry at low energies.

We will compactify type IIB string theory on an orientifold of a threefold Calabi-
Yau Kg. We start by mentioning that there are two fluxes in type IIB, one is sourced
by Neveu-Schwarz sector (NS) and another by Dirichlet branes. These are two gauge
fields By and C5 for p = 1. These are 2-form gauge potentials and the 3-form field
strength can be written as

H; = dB, (3.3)

The generalized gauge fields sourced by the Dirichlet branes are given by Cp,y; and
field strength F), 4o where p =1,3,5,-- for Type IIB and p = 0,2, 4, - - - for Type IIA.
When compactification of the theory on a manifold K, the 3-form field strengths, in
this case p = 1, are elements of the (co)homology H3(K,Z). This is also mandated
by the Dirac’s quantization condition, where the presheaf is Z. This makes the fluxes
quantized. We will come to the quantization condition later in the notes. But, to
immediately lighten this aspect, note that the 3-forms Hj3 and Fj are generalization
of the field strength 2-form F' of Maxwell’s equations in D = 4. If the magnetic
charges (monopoles) exist then the magnetic flux

/SQF%O (3.5)

so similarly, here the flux has to be computed over K of six dimensions. If the
magnetic counterparts hold true, then the fluxes

/K Hy and /K F (3.6)

are non-vanishing. Then Dirac’s quantization puts up a relation between the electric
and magnetic charges [32,33]. For the moment, we will just assume Dirac’s quanti-
zation in our theory, but we will come to a lengthier discussion of these topics later
somewhere.

Anyhow, the quantized fluxes are critical and we will refer to these fluxes as an
important ingredient in flux compactification which leads to solving problems like
unbroken supersymmetry and massless moduli. Alongside, we have localized sources
like D-branes in the theory. Generally, any flux compactification of the above kind
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has massive moduli. The issue of preserving and breaking of supersymmetry is more
crucial and deserves a discussion of its own. But we can assume that these flux
compactifications preserve the NV = 0 or N' = 1 supersymmetry.

If we may, these vacuas obtained from such compactifications should align with
the landscape of the quantum gravity. But we can relax that discussion too until we
are talking about Swampland program explicitly. Reviews on Swampland program
include [34,35]. However, as is noted in [9], this flux compactification is an approxi-
mation in finding the non-vacuum solutions which can give mass to the moduli. No
exact solution is known and we generally look for the solutions in the leading order.

From the fact that the field strengths and cycles are coming the cohomology group
defined on some manifold K and some presheaf, it is important to note that threading
cycles in the compact geometry will depend on the the metric choice on K. When
the presheaf is Z, then the data of fluxes will be in a set of integers.

Now, when we have flux charges, and because of Gauss’s law, we must also have
some negative charges so that

£§+/H3/\F3=0 (3.7)

where the flux f Hs A F3 is positive. We also define another three-form flux
Gs = F; — 7H; (3.8)

where 7 is a complex axiodilaton 7 = Cj + ie~® which combines the RR scalar and
the dilation. We can also introduce a five-form flux

- 1 1
F5 :d04+§BQ/\F3_ 502/\H3. (39)

and we impose the self-duality condition on Fs so that Fy = *10F5, then the Bianchi
identity becomes

dF5:H3/\F3—|—pD3 (310)

loc

where the last term appears for the fact that the source term is charged by D3-branes.

Our first compactification example would be Type IIB compactified on a Calabi-
Yau threefold K. The reasons for choosing Type IIB over Type ITA include that the
latter require more than the fluxes we have introduced like non-geometric fluxes [36]
and geometric fluxes. Also Type IIB is more useful when we will discuss KKLT
construction. Here we want to keep only N/ = 1 supersymmetry and not more for
this flux compactification. So there is a reduction in the supercharges from N' = 2 to
N = 1. Here we will have the advantage of O3/07 orientifolds which we will discuss
shortly.

Now, we will define the three-form Gj in Eq.(3.8) to be imaginary self-dual (ISD)
flux which means that the Hodge star x acts with eigenvalue 7 on Gj3
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The reasons for these ISD fluxes'? are that they help in preserving the supersymmetry
and the structure of the Calabi-Yau manifold. The axiodilaton 7 is also important
in the definition of G3. Moreover, ISD flux helps in the moduli stabilization after
non-perturbative and quantum corrections by giving a potential contribution called
superpotential W. These ISD fluxes give mass to the moduli space of Kg and the
axiodilaton.

3.2.1. Superpotential Contribution. Superpotentials help us to break the supersym-
metry. In the ISD flux compactification theory, we will get two potential which
will determine the scalar potential. One is the Kéhler potential and another is the
superpotential generated by GG5. The latter superpotential is called the Gukov-Vafa-
Witten superpotential

W te = / Gy A Q) (3.12)
Kg

where!'® G5 is our three-form, a combination of Hs and Fj (and axiodilaton 7) and
2 is a holomorphic (3,0) form on Calabi-Yau threefold Ks. The role of €2 is also
important and actually, 2 depends on the moduli of Kg so it becomes a function of
z;. Varying z; changes the period of €2, so )(z;) has complex structure dependence
that will be helpful when being wedged with Gg3. The superpotential Wy, also
depends on the axiodilaton 7 cause its appearance in GG3. So when the moduli is
fixed through these fluxes, axiodilaton is also affected and it gets stabilized too with
moduli. One can write Wy, is a symplectic basis as the form

Wi =11- % - (f — 7h) (3.13)

where I is the period of (z;), f, h are the integer flux quanta of Fs, Hs € H?(Kg, Z)
and ¥ is a symplectic matrix, for reference see [9]. Moreover, the superpotential is
protected from the non-renormalization theorem and can be purely calculated from
topology.

So we can write the Gukov-Vafa-Witten (GVW) superpotential as Wy, (7, 2;).
But this was not the full superpotential because it does not stabilize the Kéhler
moduli. There is a non-perturbative superpotential as well now which will stabilize
it. We will call it W,,,, which we depend on 7, z;, T,. Here, T, is the Kahler moduli
where a = 1, -, A'D. There will be three sources in this non-perturbative potential
Whp

Wip = Weps + Wiy + WED(—l) (3.14)

where the Wgps represents the sum of all the Euclidean D3-branes terms, Wy,
represents the sum of all gaugino condensate terms and Wgp—y) part is generated
by D-instantons. D-instantons’ contribution to the non-perturbative superpotential

HMGimilarly, *G5 = —iG3, G3 will be called imaginary self anti-dual (IASD) flux. Here, in the
type IIB compactification, the TASD fluxes would not contribute. Then such compactification would
be called ISD flux compactification [37].

150ne can also put up a normalization factor \/g but we will ignore that here.
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is seen as a way to control string theory non-perturbatively and there has been a
progress in understanding these, see [38,39] and references there within.

One can in fact write the flux superpotential term Wy, as
Wiue = Polynomials + Exponential Terms in 7 (3.15)

and these polynomials can be set to zero, in which the case becomes a perturbatively
flat potential one. Similarly, the non-perturbative part becomes a sum of all the
Pffafian terms. These controls are useful for many things for instance see this vacua
construction [9].

So the full superpotential becomes W = Wy, + Wp,,. We will not expand on this
non-perturbative superpotential in this paper and sometimes, one can ignore this
non-perturbative superpotential too, since for all the orders of o and g, corrections
the superpotential is just flux superpotential

W~ Wiy (3.16)
Anyway, the moduli scalar fields are of three forms in this compactification
M= Mpgeg+ Mg+ M, (3.17)

where M gg is the moduli spaces on the complex structure on Kg, M means the
Kahler moduli spaces, and M, means the moduli space of axiodilaton. We also
saw that these moduli structures have appeared in the flux compactification. The
complex structure (z;) moduli controls the shape of the Calabi-Yau K. The Kéhler
moduli controls the size of the Calabi-Yau Ky and the axiodilaton moduli which is
another type of complex structure controls the string coupling.

One can then split the Kéhler potential into three terms as well. At tree level, it
given by

Kiee = —In(—i(7 — 7)) —In <—z/ Q(2) Aﬁ(@) —2In (V(T,,T,)). (3.18)

Xe
But in fact, the beyond tree level, the Kahler potential can be perturbatively un-
derstood in the moduli stabilization. Such perturbations are necessary as they con-

tribute to the leading terms in potential V', see [9] for an exposition.

For instance, the no-scale property [10] is an important point to mention here.
The no-scale property makes the superpotential W not depend on the Kahler moduli
at the tree level. What happens is that we can write the scalar potential in a
simplified form in SUGRA

V =" (KYD,WD;W — 3|W|?) (3.19)

and when scalar potential does not depend on the Kahler moduli, then we have an
identity called no-scale property

K99, KO;K =3 (3.20)
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and this cancels the —3|W|? in Eqn. (3.19) and then the reduced scalar potential
does not have Kéhler moduli terms
(

Viree = € (dilaton moduli terms + complex structure moduli) (3.21)

and because of this, the Kahler moduli remains massless at tree level. The resolution
to this, as discussed above, could be to introduce a non-perturbative superpotential
W, as was done by KKLT [7]. There are multiple remarks on the no-scale scalar
potential (Vie.). First, it is positive-definite. The second is that its minimum is
zero. Moreover, supersymmetry is broken in the Kahler moduli direction. Third,
the Kiahler moduli'® T, do not get stabilized by this scalar potential. In essence, one
must break the no-scale property to stabilize all the moduli of the theory including
Kahler moduli.

One of the ways to stabilize the Kahler moduli is to introduce the non-perturbative
superpotential. These quantum corrections can be found in form of supersymmetric
instantons and gaugino condensation contribution. But it is not necessary that every
class of Calabi-Yau manifolds will get a non-perturbative superpotential generated.
The context of fourfold Calabi-Yau has been given in [39] where progress was made
in calculating the non-perturbative superpotential in the M-theory compactification
to N’ = 2 three dimensions on a four-fold K of SU(4) holonomy. This is roughly
comparable to A/ = 1 in four dimensions. The results were also carried to Heterotic
string theory and type IIB string theory using F-theory. In this example, the non-
perturbative potential could be generated (in cases, entirely) from the instantons.

3.3. Dine-Seiberg Problem. We will now discuss very quickly the Dine-Seiberg
problem of moduli stabilization, which will serve as an intermediate motivation for
the problems with constructing dS vacua. A sort of tongue-in-cheek quote from
Denef’s Les Houches lectures is: “When corrections can be computed, they are not
important, and when they are important, they cannot be computed.” This is in refer-
ence to the problem that appears from weakly coupled moduli conditioning, which
is naive as follows: for moduli p (could be a volume modulus or the inverse string
coupling e~?), we expect that the weakly coupled limit generates a potential like

cI}im Vi(p)=0. (3.22)

However, we only get a runaway or strongly coupled curve for the potential rather
than a local minima. To generate these, one requires higher-order corrections. In
a sense, this extends into the leading order EFT/swampland discussions where the
potential for moduli are a problem. In this fashion, what we expect of dS vacua has
to do with the higher order corrections being indicative of strong coupling.

A very important remark we wish to make now is that, as already discussed,
Kahler moduli do not get fixed by flux superpotential Wy,,. That is when the
quantum corrections become important and too the Dine-Seiberg problem. Because

6Moroever, the Kéhler moduli is invariant under pertubative corrections.
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P

FIGURE 2. The potential V(p) decays as p increases in the weak cou-

pling limit. If we include the higher order corrections, we get something
like Fig. 3

such higher-order corrections take us to the strongly coupled regime and not easy to
calculate which has been sloganized in many places including ours.

Vers

p

FIGURE 3. According to Dine-Seiberg [5], our string vacuum should
be in the strongly coupled regime.

3.4. Maldacena-Nunez no-go theorem. Now we have seen a bit of KKLT con-
struction which promises an uplifted dS vacua from non-perturbative correction in
moduli stabilization. But before that, there is a famous result due to Maldacena and
Nufiez [6] which goes by the name of ‘no-go theorem’. From the Dine-Seiberg, we
can believe that our de Sitter vacuum should be in a strong coupling regime. In that
way, we would not be running into a runeway argument of infinite volume.

Now, for a classical supergravity with a 10D action at two-derivative level (like
the ones we have treated in initial parts of this paper where no quantum corrections
or non-perturbative corrections are assumed), the compactification does not yield a
dS vacuum if the internal manifold is compact, static and without singularities [6].
This no-go theorem is about classical compactification with flux which preserves
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the supersymmmetry. To circumvent this no-go theorem, one can add quantum
corrections or non-perturbative corrections and compactification on an orientifold
(localized sources)so that we also do not get a Dine-Seiberg problem. So this is
clearly implies that the de Sitter solution is not valid at classical level without
quantum corrections.

Progress in these no-go theorems have happened over the years and some of these
will be relevant in our final discussion in Sec.5. These no-go theorems [11-13] are
mostly about heterotic string theories but dualities can extend them to type 1B, M-
theory, and such too. A work that we should mention here is about the no-go theorem
for the AdS case (Maldacena-Nufiez no-go theorem originally was about Minkowski
and de Sitter compactification) when AdS scale is bigger than the Kaluza-Klein
scale [44].

A most natural attempt has been done to avoid the classical no-go theorem is to
consider a classical compactification on an orientifold and then add quantum correc-
tions or stringy ingredients without which there is no de Sitter vacuum. A successful
example of this is the KKLT proposal where a type IIB flux compactification is done
and then it considers non-perturbative corrections and then uplifts using anti D3-
branes to a dS vacuum. However, such a result does not get entire approval from
programs like Swampland which we will discuss in the last part of the paper.

Let us make a final comment on the construction of de Sitter vacua by quantum
corrections in the SUGRA 10D action. They are not complete and has a few prob-
lems as pointed in [45]. For instance, these derivations (and the required corrections)
are quite hard to compute. Anyway, flux compactification in type IIB with the en-
gineering that we have described above is more appropriate for moduli stabilization.

3.5. Uplifting and Moduli Stabilization. We will now talk about the mixing
of D3/Db-branes, which will pave the way to discussing the KKLT de Sitter vacua
construction. Our present state is one where we stabilize moduli for a type IIB
compactification onto CY3 and deal with D-branes and O-planes under the constraint
of the tadpole cancellation condition. In particular, type IIB compactifications in
SUSY AdS will be our focus, which we will uplift into de Sitter (metastable) vacua in
later discussion'”. Schematically, a given superpotential (notationally aligning with
most literature) W, this would be independent of the Kahler moduli. As an example,
the Gukov-Vafa-Witten superpotential [16] is Vgyw = f G N3 is independent of
the Kahler moduli and depends solely on the complex structure moduli and dilaton.
In the discussion below, a general form for W would be chosen to be

W =W, + Ae* | (3.23)

where W) is constant and arises from the complex structure moduli and dilaton part
of the theory, and A and B are constants with p the Kahler volume modulus. The

IIn the next subsection, it will be clear in what sense these conditions allow to circumnavigate
the Maldacena-Nunez no-go theorem.
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GKP [37] fixing of the Kahler potential into
Vi(p,¢) = =3log (p+ p — k(9)) , (3.24)

for which the no-scale cancellation. Simply, the canonical SUGRA potential can be
constructed given a Kahler potential like above into

For the choice of W mentioned above'®, it can be shown that there is a particular
way of obtaining a de Sitter vacua albeit metastable. We are clearly skipping a
lot of technical details, but we will deconstruct the discussion from AdS vacua into
dS vacua gradually. Before doing this, we will also touch on the nature of the
Klebanov-Strassler geometry and the uplift scenario when we add in an D3-brane.
It is important to note that we typically expect to find vanishing derivatives of the
F-term unless we specifically choose scenarios with directional SUSY-breaking. Once
we uplift to de Sitter vacua, this would be a SUSY-breaking compactification with a
small positive cosmological constant.

The KS geometry describes, very naively, the geometry of My x C%, where C® is a
six-dimensional conifold with a tip of finite R. We take it that the complex structure
moduli are fixed. The resulting “warp” region that we get here will be used later on
when we add in D3-brane into the theory for tadpole cancellation. The D3-brane
will have a tendency, as we will see below, to move into the throat and the breaking
of SUSY thus produced will give us an “uplifted” de Sitter potential.

We first have a few remarks in order. The full potential is composed of the
full superpotential and the Kahler potential, where the former receives only non-
perturbative corrections, and the latter receives perturbative as well as non-perturbative
corrections. This adds to the complexity of stabilizing Kahler potential, and in par-
ticular identifying o’ corrections to it. However, recently by Moritz et al, it was
shown that it is possible to at least find leading order de Sitter vacua, where we
restrict solely to the tree-level potential. Further, what we refer to as the “full su-
perpotential” is the GVW superpotential W, plus the nonperturbative corrections
it receives.

A part of the reason that we start with type IIB SUGRA instead of type ITA is
also, as mentioned before, that the axiodilaton in type IIB becomes the modulus of
elliptic fibration when KK compactifying M-theory into type ITA. From this, the data
we would have would be the Calabi-Yau fourfold CY4 with C(K°, ), and the tadpole
cancellation condition would count in D3-branes, D3-branes and O3-planes. Now,
we take the tree-level Kahler potential and find the A/ = 1 scalar potential V as seen
from the canonical SUGRA construction from before. Given this, we expect that
there exists a SUSY AdS vacua with some really small negative value A = VyM?>

pD
where V) < 0 is the critical point derived from the F-term. The effect of the nature

18I0 the computational example we will take in the KKLT discussion, we will choose to work
with a complex scalar T instead of the modulus p to a similar functionality.
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p anti-D3’s

FIGURE 4. An illustration of the conifold geometry (derived from KPV
[7]). The M RR-fluxes thread the A-cycle.

of the superpotential is that it receives nonperturbative corrections from D3-branes
and D7-brane wrappings via gaugino condensation (which we will not discuss here).

We will now discuss the actual uplifting that we will use in KKLT. The essential
thing to remember is that the tadpole cancellation is preserved, so if we add in “too
many fluxes” in the sense we will discuss in KKLT, there must be some negative
contribution to cancel the extra terms. Flux-wise, we take the following flux units
for the conifold: we take, for a Calabi-Yau threefold K, M units of F3 flux through
the A-cycle of K and N units of H3 flux through the B-cycle of K, and the “counting”
to be done here is that for a change between these units of fluxes, a corresponding
D3/D3-brane may be introduced to counter the effect of the change. E.g. as will
be appropriate later, if we add too much F, then a corresponding contribution with
n + 1 D3-branes may be introduced, where n is typically 0. If we take a theory of
only n D3 branes at the throat, the geometry of the throat must be determined so
that the n D3-branes settle with least energy. This conifold geometry is typically
the Klebanov-Strassler geometry, which looks something like the illustration below.

4. KKLT AND DE SITTER SOLUTIONS

Before we proceed, we have two remarks in order. (1) The KKLT proposal is not
the only way to construct a de Sitter string theory vacua, but at least in leading
order approximation, it seems to be a viable construction. There are swampland
issues with this construction, particularly when taking into account of higher order
corrections, but for our purposes we will strictly remain at leading order. (2) In
constructing a de Sitter vacua, we expect that the stability of the theories are of
some finite order in construction. In this sense, we really seek metastable vacua, and
the order of metastability is usually not explicitly computed unless we take precise
corrections into account. In any case, doing precise computations is still an open
challenge; by using machine learning techniques, one can still find a reasonable sized
flux landscape to sample from, but even this is not enough to perfectly determine
some key features of the vacua like the metastability order. In order to illustrate the
computational complexity of the KKLT construction, consider that at leading order,
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we have to precisely compute the flux superpotential terms that include Euclidean
D3-branes, gaugino condensation terms, the flux terms themselves, then the tree-
level Kahler potential, the D3-brane terms (which at leading order become the KPV
potential + subleading terms) and the corrections from WSI.

There are two ingredients in the KKLT construction. The first is the KPV poten-
tial, which contributes to the full potential along with the flux superpotential and the
nonperturbative corrections to it. For the moment, we will ignore the backreactions
to the KS geometry caused by the inclusion of these D3-branes, but we will consider
the corrections to the D3-potential in later revisions'?. To begin with, we take the
AdS vacua potential that scales by ~ —AM,, for |A] < 1. We then want to uplift
this potential into a very small positive value Vj. Before proceeding, note that the
energy-density contribution from the single D3-brane is

QaéTDg 1
Vis = p (Tm ) (4.1)
This can be seen as follows: taking the 10d warped geometry with metric

ds® = e*g,, dz"dz” + e **g,,dy’dy’

and the warp factor ends up with value a = ay. Going between the string frame and
the Einstein frame, we get an overall scaling like

M

M~ T (12)

9s
from which we get an overall dependence of order ~ 1/gf. The derivation for the
additional factor for the volume modulus is left as an exercise for the reader. (4.1)
can be further condensed into the form

D
Vig = —

73

, (4.3)

where 7 = (Im p) for convenience. In the original KKLT paper, there is an additional
prefactor 8 in (4.3) owing for brevity uses, but for our purposes we will drop coeffi-
cients pertaining to this factor. The term D is the key “controller” for finding the
vacua landscape, and is the general condensation from whatever the exact potential
contribution is. In this condensed form, the full potential is

The V55 is the KPV potential without corrections. Even in a leading order theory,
we typically have more data needed, like said before. The computable terms would

be:

W = Wavw + Wae + Wgps  and
K = Ktree + KWSI .

KPV corrections appendix to be added in upcoming revisions. [v1]
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120.

First u stabilize the complex structure moduli. Then wu stabilize the

Kdhler moduli. Then u get an AdS (but mebbe no scale separation).
Then w put an anti-D3 [brane] in to uplift to dS. Then u get the

money. Then u get the power. Then you get [REDACTED].

In order to illustrate this scenario, we will use the STRINGVACUA Mathematica
package to compute the minima of the F-term. In order to do so, we will fix a simple
leading-order example in type IIB supergravity. We will break the setup into two
parts, one for the superpotential and one for the Kahler terms.

(1)

Superpotential: The form our superpotential will take is as usual:
W =Wy+ Aexp (—aT) , (4.7)

where a factors in gaugino condensation and A is a prefactor for the nonper-
turbative effects. In this example, we will only rely on gaugino condensation
contributions and leave out ED3-branes. We take complex scalar

T =t+ir, (4.8)

and in this example we will rely on hand-picked values for Wj,.
Kahler potential: The Kahler potential in this example is

K = —3log (T +T + %) : (4.9)
where ((x) is a leading order o/-term that is not fixed and will take insensitive
values. It is worth stating that in our example we do not consider explicitly

the large-volume scenario with these parameters, which would have to be
fixed /bounded.

Then, we have the following parameters:

e Complex fields: {T'}

e Real parts: {t}

e Imaginary parts: {7}

e Kahler potential: Given in (4.9)
e Superpotential: Given in (4.7)
e Parameters: {Wy, A,a,((x)}

This is a very simplified example, of course, and we have not added in the KPV
potential V55 or the o'-corrections. However, since the full scalar potential is (4.4)
and the KPV potential is (4.3), we will simply compute the flux terms and add the
Vp5 contribution manually. In a realistic calculation, of course, there are parametric
bounds on the Klebanov-Strassler throat radius and the corrections beyond leading
order that could potentially invalidate the tadpole condition.

20We thank Stringking42069 for this work of art.
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As a first example, we remove the ¢ term from (4.9). We will also fix the Wy to
be equal to —107%, and @ = 0.1. We will also further assume that the pfaffian is
equal to unity as well, but there are more computations requiring precise evaluation
of this. With this, we construct a model from

W = —0.0001 + exp (—0.17T) |, (4.10)

for which we further evaluate the minima wrt t. Using Stringvacua we get

complex fields {T}
real fields {t}
imaginary fields {tau}
Kahler potential —3log (T*+1T) (4.11)
superpotential e 9T —0.0001

e~ 03 (<011 (0.00166667¢>+0.05¢ ~5 K602t cos(0.17))
3

scalar potential

The minima for this potential would be at ¢ — 362 with minima —7.20971% 10727,
and there are no non-zero F-term directions, showing that SUSY is indeed preserved.
The potential here is of the form in (4.11), and to this we would add the KPV
potential (4.1). For this, we take the value of D = 3 x 107Y, the same as in the
KKLT setup. Then, choosing a suitable parametrization, we take the additional
KPV term to go like ~ D, and this would give us a positive value ~ 2.9 x 1079,

We could instead consider a racetrack superpotential rather than the KKLT su-
perpotential of the form (3.23), we can obtain slightly more control over the uplift.
In particular, if we consider a twotrack superpotential of the form

2nT 2nT
W =Wy + Aexp (_T> + Bexp (—7> : (4.12)

. . . . . . 27-(- o
\;vhere we take in previously hidden gaugino condensation prefactors a = 57 and b =
s

37> We can obtain a potential for which the control parameters become Wy, A, B, M, N.
The prefactors A and B can be taken to be unity for convenience of discussion here.
M and N are determined by the gauge group of the gaugino condensation [17]. The
minima is then ~ {—1.97-15,{t — 113.643}} As usual, we add in an uplift that is
controlled by D, for which we take one D3-brane, and the resulting potential would
be uplifted to a small positive value controlled by D. As before, we still typically
require the KPV validity constraints with p/M and finite S? control. An example
of the variance of the potential with and without uplift is shown in figure 5 taking
different parameters, where we take constraints on D and set p/M < 1. In this case,

the uplift “fails” and the minima is still negative:

A few remarks are in order:

(1) We have not constructed a physically realistic uplifting example, in which
case we would have to factor in perturbative corrections, worldsheet instanton
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Vv(t)

4x1075

3x1070

— D0=0
2x1070 DO = 0.000920039
— DO = 0.00193208

— DO = 0.00202409
1x1078

-1x1078

F1GURE 5. Failed KKLT-uplifting in a simplistic scenario.

corrections, backreactions in the throat geometry, and the Kahler potential
would have to be evaluated more thoroughly.

(2) We have ignored the explicit form for the nonperturbative superpotential
contributions, which would need us to find the ED3- and GC' contributions.
See for instance the leading order explicit construction of de Sitter vacua by
Moritz et al [13].

(3) Our examples have suppressed calculations for the Kahler potential correc-
tions and the KPV corrections/backreactions. For a more realistic computa-
tion, we would have to factor in the KPV corrections, which could potentially
invalidate the KPV leading potential term [19] and the uplift parameter con-
trol, which could lead to runaway decompactifications.

(4) Finally, we also note that the KKLT proposal in itself has physical issues —
see Vafa et al [50]. In some sense, it may be more meaningful to work with
racetrack superpotentials®' or the large volume scenario [51].

5. IS THERE A DE SITTER SOLUTION?

In this section, we will provide a sociological commentary on the various sides
and their arguments on if there exists a de Sitter vacua or not. There have been
multiple examples of de Sitter vacua construction, KKLT being a famous one which
was covered in Sec. 4, gives an uplift to the AdS vacua. The question if there is a

21Which also do not possess a one-shot de Sitter construction due to the bounds of the AdS
moduli conjecture.

DO =0.00184008
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direct yielding of dS vacua is still open. But as pointed in [415], these all vacuas have
problems. For instance, the quantum corrections are impossible to calculate in the
strong coupling region or the non-geometric fluxes which have to be introduced as a
full string theory must have such backgrounds. However, these non-geometric fluxes
are quite hard to handle too. Ref. [45] also mentions about the back reaction of
anti D3 branes. Moreover, same paper debated that such failures indicated that not
much work had fertilized in string theory on de Sitter and cosmological constant.
An important suggestion was made to introduce the dark energy more in string
theory. But they (also see [52] for similar thoughts) concluded that the string theory
conspires against a de Sitter vacua and there exists no solution at all. Is it really
true?” We would say, we do not know yet. However, the problem of not having a
phenomenologically consistent construction is a big one.

Note that we have also ignored some phenomenological aspects of the KKLT con-
structions, particularly those pertaining to the uplifting in the Klebanov-Strassler
setup??, such as the puffing of D3-branes into NS5-branes or the curvature backreac-
tions. But even brushing these aside, there are some observations on the EFT side
of things.

Moreover, the no-go theorem by Maldacena and Nunez says that the classical
solution of de Sitter does not exist. This troubles the construction as well and leads
to believing the de Sitter conjecture in swampland. The swampland criterion [53]
states that the potential of the scalar field satisfies a universal bound

c
> — .
\VV|> i, Vv (5.1)
where ¢ is an order 1 constant and V(¢) is the effective potential for a low energy
EFT. There exists a refined version of this conjecture which requires that either (?7?)
is satisfied or that the minimum of the Hessian eigenvalues are bounded from above
with a constant c¢. This bound was studied cosmologically in [54] and other works
include [55-57] and [58]. This conjecture excludes the meta-stable de Sitter vacua.
This is called the de Sitter conjecture.

Another related conjecture in swampland is called Trans-Planckian Censorship
Conjecture (TCC). The TCC constraints the lifetime of these meta-stable de Sitter
vacua. But the best string theory can offer is the meta-stable de Sitter vacua, that
too is suggested by [52] that the meta-stable de Sitter belongs to Swampland. So in
the ‘string theory’, a de Sitter does not make sense according to these conjectures
and so dS/CFT would not make sense. However, we have seen dS/CFT examples
and discussions in different literature, also in non-string theory cases.

Moreover, outside of KKLT and LVS proposal, there are no-go theorems that

we did hint in above discussion on Maldacena-Nunez no-go theorem section which

22There also exists a more sophisticated construction involving uplifting using the S-dual setup,
but it is beyond the scope of this paper [49].
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possibly poses more no-go theorem about de Sitter (even AdS vacua) even in non-
classical regime [41,42,59].

In conclusion, the swampland program mostly pushes de Sitter vacua, or even
meta-stable de Sitter vacua, into swampland. But some examples are also given for
the landscape case [60], see also [G1].

A few remarks are in order now:
Firstly, the tadpole cancellation is a condition that should be met in any mean-
ingful compactification, so that

Qflum + AQos, D3, D3 — 0. (5-2)

Bounding to this condition sets constraints on say small g,, or the distance conjecture
implicitly.

Second, it is clear that metastable de Sitter vacua are more likely than stable
de Sitter vacua. However, a general problem is that the first step of any KKLT-
like uplifting proposal, i.e. to find a SUSY AdS vacua with |[Wy| < 1, is usually
not attainable. However there have been papers showing that such values can be
found and that the Kahler moduli can be stabilized with a suitable W, as well. In
such constructions, not only can you find AdS vacua, but you can uplift it “reason-
ably” (whatever that means in terms of the throat curvature corrections), and obtain
metastable de Sitter vacua. The downside is that the corrections to KPV potential
can still invalidate the uplifting, but at leading order or in some limits where the
corrections can be suppressed, one indeed does obtain actual dS vacua.

There are many issues in a similar direction, such as destabilized D3-branes, or
invalid throat constraints, or perhaps even that the nature of the conifold geometry
could prevent “small uplifts”, which are those that do not lead to moduli destabi-
lization [62]. A general intrinsic subtlety with the Klebanov-Strassler setup is also
that given a finite number of flux vacua and given the tadpole cancellation, there
may not be enough “control” over the parameters. In most cases though this is not
of concern though since we do not consider “small” compact CY3 geometries.

An observation we would like to quickly go over is that the inclusion of the non-
perturbative superpotential term is not necessarily of the KKLT form as said before.
In the above setting, we took an N-stack of D7-branes with wraps around a four-
cycle, for which the resulting gaugino condensation was a contribution that is roughly
~ Aexp(—aT). Note that we say “roughly” here since we suppress the additional
O(exp (=T/N)) terms for convenience, which don’t make the previously seen KKLT
form any different though. In a racetrack superpotential theory, we would typically
have multiple contributions of this form, which in a two-exponent form would look
typically like

W =W+ > (Aexp(—aT}) + Bexp(—bT})) . (5.3)

It is possible that these types of superpotentials could give more “control” over the
construction, but the exact nature of such KKLT-like constructions is unclear. We
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say this in double quotes since there haven’t been any particular constructions thus
far, and this observation is actually in accordance with the AdS moduli conjecture
[45].

Something very important to note is that the KKLT solution that we have dis-
cussed in this paper is only a particular case of a general class of nonperturbative
uplifting constructions that allow de Sitter vacua to be constructed from AdS. So
while classically there are no dS or Minkowski string compactifications, we indeed
have the liberty to construct them with such corrections. Which sort of such con-
structions would actually give a physically realistic de Sitter vacua though, is an
open problem.

There are often discourses about if there is a de Sitter vacua in string theory
online and offline, some of them become dangerous while some of them are without
a satisfactory conclusion. We believe that this problem could be solved if one starts
constructing more vacua with better corrections, better control. Perhaps by not
going directly into four-dimensional EFT and trying simple examples as suggested
by [45].

Finally, in [12], it was shown concretely that there exists a string theoretic de
Sitter vacua. However, this paper is too technical to discuss here. So we would like
to leave this as an exercise to the reader.
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APPENDIX A. WHY CALABI-YAU MANIFOLDS?

This section will be a mathematically oriented discussion about the Calabi-Yau
that we can not afford in a paper on physics.

A Calabi-Yau manifold K is a complex Kahler manifold with a vanishing first
Chern class. We saw some of the consequences of this definition and how it is ben-
eficial in supergravity and string compactifications. The history of this particular
object is quite interesting from either side of mathematics and physics. In mathe-
matics, it was conjectured by Calabi and proved by Yau [63]. Calabi’s conjecture
was about that for a compact Kahler manifold K with vanishing first Chern class
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c1(K) = 0, there exists a unique Ricci flat metric in every Kéhler class. Moreover, it
made a quite impression in algebraic geometry and differential geometry afterward.

From physics perspective, these manifold solves Einstien’s equations with Ricci
tensor R,, = 0. They are interesting, or perhaps not really, because they also
have a moduli space attached with it since they are complex manifolds and because
two complex manifolds can be deformed with each other using holomorphic dif-
feomorphism?® between them. Upon compactification, these moduli fields appear as
massless scalar fields in the theory for which we require a resolution, discussed above
in Sec. 3.

A Calabi-Yau manifold is characterized by its the Hodge numbers h?¢ which is but
the dimension of the complex vector space H??(K) on K. And by Hodge’s theory,
they also determine the Betti numbers. Dolbeaut cohomology and de Rham coho-
mology are incidentally very much used in discussions about Calabi-Yau manifolds
and especially in mirror symmetry. In fact, mirror symmetry, at some abstract level,
is a statement about the equivalence of de Rham and Dolbeaut cohomology. Al-
though, here we will introduce a simpler definition?® of mirror symmetry. Physicists
usually see mirror symmetry as an equivalence of theories on Calabi-Yau manifolds
and these are related by Hodge numbers of the manifolds. However, mirror symme-
try is also equivalent to T-duality which was addressed first by [65]. So a type IIB
string theory on a manifold is equivalent to type ITA string theory on the mirror
manifold.

It was introduced by Witten [66] that two different sorts of twists done to a quan-
tum field theory are also equivalent to each other by Fourier transform and can be
explained by Mirror symmetry too. These twists are A-twist and B-twist. Basically,
the A-model on Calabi-Yau manifold Y is equivalent to the B-model on X which is
the mirror of Y. However, it would be way out of the scope of these notes to explain
them here. A more abstract version of mirror symmetry is provided by Konstevich,
called homological mirror symmetry [67] which is a conjecture about the equivalence
of categories on Calabi-Yau manifold and its mirror.

A Calabi-Yau manifold solves the ten-dimensional supergravity equations in the
presence of fluxes, as in type IIB compactification. This particular feature is very
favorite to physicists. While in type ITA such a construction should be translated
using T-duality [68], however, there has been not much work in this area. Also,
see [69] where type ITA flux compactification was studied and moduli stabilized but
with O6 planes backreaction. Or perhaps, this paper DeWolfe, Giryavets, Kachru,
and Taylor [70] where has been showing that fluxes are sufficient to stabilize all the

231 general, we try to vary the complex structure on the manifold, at least for lower dimensional
Calabi-Yau manifolds, locally we can say that.

247 celebrated discussion of mathematics (mostly algebraic geometry) of Calabi-Yau manifolds
and mirror symmetry can be found in [64].
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moduli in type ITA while in type IIB, we also require non-perturbative corrections,
at least for a controlled compactification and without a runaway.

In the above sections, we have seen that in supergravity, Calabi-Yau manifolds were
used to preserve the supersymmetry. But the lack of supersymmetry in experiments
prompts us to make models where supersymmetry is broken. We also talked about
these in the above sections where, say, only half of the supersymmetry is preserved.

APPENDIX B. ROLE OF INSTANTONS AND OTHER QUANTUM CORRECTIONS

We discussed the non-perturbative corrections that are required to stabilize all
the moduli fields because the no-scale property makes the flux superpotential not
depend on Kéahler moduli. Our discussed KKLT mechanism also utilizes the quan-
tum corrections to the superpotential so that Kahler moduli get stabilized. These
corrections are better if non-perturbative [45]. So, these non-perturbative corrections
(of instantons) are very crucial in KKLT’s yielding of de Sitter vacua using uplift.

The non-perturbative correction includes the terms of D-instantons corrections
and gaugino condensation.

To be completed in upcoming revisions. [vl]
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