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Abstract

We discuss the Fourier transformation of finite groups and Pontryagin duality.
We discuss the motivation behind the character group.
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Our aim is to discuss the Fourier transform of an abelian group G and how the
vector space V of representation of G sheafifies over the character group GV . The
non-commutative version of this version for non-abelian is more difficult and lot more
non-trivial due to difficulties in defining the dual group such that Fourier transform and
inverse Fourier transform is vague. The standard reference for this note is [1].

Let us first see how quasi-coherent sheaves are developed for a certain commutative
algebra A. For any commutative ring, we have the following R−module

R → End(V ) (1)

where V ∈ R−mod. For this, one can define the spectral decomposition as following
over a Spec R

V = V ⊗O(U) (2)

where U ∈ Spec R and V would be a sheaf here from this spectral decomposition [2,
Section 01I6], see also [1, 3] . There exists a canonical isomorphism between the R-mod
V and the sheaf V [2, Chapter 01H8]. Spec R is isomorphic to the locally ringed space
(OSpec R, Spec R), where OSpec R is the sheaf of rings and the pair is called affine scheme.

Anyways, for an abelian group G, we have the linear representation

ρ : G → GL(V ) ≃ End(V ) (3)

where V is defined over some field K. (The map from G to End(V ) is a monoidal map.)
To find what is the spectral decomposition in this example is ours job here. Answer is
the character group.

Let us also revisit some character theory now1. A character X is the map

X : G → C× ⊂ C (4)

where C× is the multiplicative ring, i.e. C/{0}. Eq. (4) is basically the complex repre-
sentation of the group G. The characters follow

X (g)X (h) = X (gh), g, h ∈ G (5)

and they are also orthogonal. Character X send the element g to the trace of the
corresponding matrix in the representation

g 7→ X (g) = Tr(ρ(g)) (6)

where X is a complex valued function. A character is called principal character if

X (g) = 1 (7)

otherwise it is non-principal character. The numbers of distinct characters can not
exceed the order of any finite abelian group.

1For introduction to Character Theory of finite groups see the classical texts [4, 5].
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These characters are also invariant under the conjugacy class so

X (hgh−1) = X . (8)

Characters are also called class functions. To understand this, we need to understand
that characters map to the the trace of the associated matrix in the representation
GLn(F ) for G. So basically X(g) = Tr(ρV (g)) and for the C-endomorphism, we have
Tr(ab) = Tr(ba). Now

X (hgh−1) = Tr(ρV (h)ρV (g)ρV (h
−1)) (9)

= Tr(ρV (g)ρV (h)ρV (h
−1)) (10)

= Tr(ρV (g)) = X (g) (11)

This is the reason why it is also called conjugacy class or class functions.

Now let us consider an abelian group acting over a vector space V

ρ : G → Aut(V ) ≡ GLn(F ) (12)

and the {ρ(g)}g∈G are the family of operators. Our job is to decompose V in this spectral
decomposition. For this linear representation over G, we have

g 7→ λ(g) (13)

such that λ(g)λ(h) = λ(gh) where g, h ∈ G. This is what is called action of G over the
vector space V .

Let v ∈ V be an eigenvector

g · V = X (g) · v (14)

where X is the character maps that we have discussed. The eigenvalues for these eigen-
vectors are given by the characters group

GV = HomGrp(G,C×) (15)

So, basically this is the spectrum for our spectral decomposition and we will do the
spectral decomposition over GV now.

For the representation of group, we also have an inclusion which is a monoid map

G → Aut(V ) ⊂ End(V ) (16)

and
HomMonoid(G,Forget(End(V ))) (17)

We can now associate a C algebra with this group homomorphism

HomMonoid(G,Forget(End(V ))) = HomC(CG,End(V )) (18)
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where G is finite as always and

CG = {
∑
g∈G

F (g) · g} (19)

where f is a complex function from the group, i.e. F : G → C. The special thing about
F is that it associates a canonical element to every g ∈ G such that F is 1 at G otherwise
it is 0. So the canonical elements gF are

gF = 1 · g ∈ CG (20)

It is easy to see that the algebra structure of CG comes from the convolution of these
elements gF

gF ⋆ hF = ghF (21)

and this algebra (CG, ∗) is commutative algebra iff G is abelian. Basically, we have
taken the action of G and replaced it with the associated group CG and its action on
V , i.e. CG ⟳

V .

This is what we were hunting for and we will sheafify the representation of G over
the spectrum

Spec (CG, ∗) (22)

and this is just the character group GV

Spec (CG, ∗) = GV . (23)

This is the Fourier transform that we were looking for and we just sheafifes over this
spectrum and apply these methods to understand the quantum theory.

What is important to understand that the Fourier transform changes from the G to
its characters group GV and we sheafifies over this GV and the associated algebra is just
(CG, ∗). In case of seeing it simply, we have the following integral transform

f =

∫
α∈G

f̂ · Xα (24)

where Xα is just the character representation of α. So basically, there is a very interesting
duality between the group G and the character group GV .

We can call this GV the dual abelian group of G and GV is abelian. Under this, we

can canonically embed G in
ˆ̂
G. This is basically

g −→ {X 7→ X (g)}, g ∈ G (25)

which is an isomorphism.

Update on 20 Jul: We will discuss the Pontryagin Duality and Lurie’s Categorifica-
tion of Fourier theory in a later version of this same note.
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