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Abstract

In the following notes, we discuss information theory, classical and quantum. We discuss
Shanon entropy and its mathematical properties which include mutual information relative
information, and Holevo bound. Shanon entropy is discussed using an ensemble. We finally
comment on noise and errors in a communication.
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1 Introduction

Before we discuss the classical information theory, let us have a look at “what information theory
is in physics?” or at least in our context. Let us consider that Alice has sent a message to Bob.
What parts of the message Bob has received, what is the rate of the communication, relative
communication? These are ideas which we need to discuss. The main ideas are [1]

1. What is the ultimate compression of the message?

2. What is the rate of communication?

In this note, we will primarily work on the first idea of information theory and have a good
look at the second question which is solved by channel capacity. A good treatment of the subject
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can be found in [1–3]. Moreover, this subject has been influenced by statistical physics and has
influenced the same. It is also used in engineering, we will see one example of such cases.

We write entropy as the measure of uncertainty a random variable x as (see Ch 10 in [3] for
detailed discussion)

S(X) =
∑

−p(x) log p(x), (1)

where p(x) is the mass distribution of the variable. In quantum information theory (or quantum
Shannon theory), we use discrete matrices in the place of mass distribution. In Eq.(1), we mostly
use logarithms in base 2 and measure entropy in bits. We will discuss this fashion later.

The entropy in Eq.(1) should only become zero when x→ 0, as 0 log 0 → 0. Furthermore, S ≥ 0
as it is in thermodynamics. If one wishes to change the base, one can do

Sa(X) = loga(b)Sb(X) (2)

and this can be easily proven using logarithmic identity.

Figure 1: A binary entropy with two possibilities. One can observes that entropy is 1 bit when
p = 1/2 and (1− p) = 1/2. (We write entropy as S = −p log p− (1− p) log(1− p))

Relative entropy: It is the measure of the distance between two distributions. (A good example
is given in sec 2.3 in [4].) For mass distribution p(x) and g(x), the relative entropy is given by

S(p||q) =
∑
x

p(x) log
p(x)

q(x)
(3)

We use relative entropy (or Kullback–Leibler divergence) when there are more than one distri-
bution for the variable, in our case it is x. One can also check that S(p||q) ̸= S(q||p) and S(p||q) ≥ 0
with equality only possible if p = q.

Mutual information: If we have two variables X and Y with a joint probability mass function
p(x, y) and marginal probability mass functions p(x) and p(y). Then the mutual information
(I(X;Y )) is given by the relative entropy of the joint proability mass function and the product
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distribution given by p(x)p(y)

I(X;Y ) =
∑
X

∑
Y

p(x, y) log
p(x, y)

p(x)p(y)
. (4)

An interesting relation between mutual information and entropy is given by

I(X;Y ) = S(X)− S(X|Y ) + S(Y ), (5)

where one can redefine using chain rule that S(X|Y ) = S(X,Y )−S(X), where S(X|Y ) is the con-
ditional entropy and S(X,Y ) is the joint entropy (see [1]). It is interesting to note that conditioning
an entropy reduces the entropy as

S(X|Y ) ≤ S(X). (6)

Monotonicity of Relative Entropy: Suppose we have two variables X,Y and two probability
distributions PXY (x, y) and QXY (x, y). This gives us a relative entropy for the joint probability
S(PXY ||QXY ). But if we observe only one variable, say X, then the reduced probability is

PX =
∑
y

PXY (x, y) QX =
∑
y

PXY (x, y) (7)

this gives us the confidence in observing X than the initial hypothesis is wrong by S(PX ||QX). It
is harder to disprove the initial hypothesis if we only observe X [4], so

S(PXY ||QXY ) ≥ S(PX ||QX) (8)

this is called “monotonicity of relative entropy”.

1.1 Shanon Entropy

We discuss Shanon entropy or the classical information theory. Suppose Alice has sent a message
to Bob from the alphabets a1, . . . , ak, where letter ai is observed with probability pi (i = 1, . . . , k)
with the probability distribution P . The total number of messages comprised with the n alphabets,
where ai occurs Npi times and n≫ 1, is given by

n!

(np1)! . . . (npk)!
≈ nn∏k

i=1(npi)
npi

= 2nSP (9)

where SP is the Shanon entropy per letter

SP = −
∑
i

pi log pi. (10)
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2 Quantum Information Theory

In Shanon entropy, we had a message of n letter from a list of alphabets and Shanon entropy was
the number of bits in the message. If we generalize the situation into a quantum theory, how can
we do it?

We can construct another set of alphabets, but this time from ensembles of states, and Alice
can create a quantum message to send it to Bob and figure what is the ‘Quantum Shanon’ entropy
of the message (see [2] for elementary discussions).

2.1 Density Matrices

Density matrices, or sometimes called density operators, are hermitian matrices with unit trace.
We define density matrix for ψj with probability pj

ρ =
∑
j

pj |ψj⟩ ⟨ψj | (11)

where pj is non-negative and must add up to one and

tr(ρ) = 1. (12)

Let us suppose that ψA belongs to Hilbert space HA and ψB belongs to Hilbert space HB. The
product Hilbert space (which is given by tensor product) is HAB = HA ⊗ HB and we can write
ψAB as the combined vector in HAB from ψA and ψB, so ψAB = ψA ⊗ ψB. One interesting thing
to realize is that an operator XA if acts on ψAB can give information about ψA even if we forget
ψB. Indeed, XA has corresponding operator XA ⊗ 1 in ψAB.

We must point out that ψAB, if a generic pure state, is an entangled state in HAB instead of
a product state. (An interesting follow-up would be how to do purification such as ψAB with bell
states.) We can write the pure state in terms of orthonormal vectors

ψAB =
∑
i

√
piv

i
A ⊗ viB. (13)

We should discuss another concept called ‘Fidelity’ of quantum states. We define Fidelity
F (ρ, σ) as the closeness between two states so that one passes the test of another. We can write
Fidelity in many ways, and one popular is by trace-norm

F (ρ, σ) =
(
tr|√ρ

√
σ|
)2

(14)

and 1 ≥ F ≥ 0. If ρ and σ are two pure states, the Fidelity is just inner product between states

F (ρ, σ) = | ⟨ψρ|ψσ⟩ |2. (15)
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Fidelity is symmetric, i.e. F (ρ, σ) = F (σ, ρ). Another measure for closeness of states is given
by “Trace distance.”

2.2 von Neumann Entropy

Once we know that density matrix is important ingredient which replaces the probabilistic mass
functions in quantum information theory, we can write the entropy for such ensemble. The entropy
we have is von Neumann entropy1

S(ρ) = −tr(ρ log ρ). (16)

We can write Eq.(16) in terms of Shanon Entropy if we choose a suitable basis

ρ log ρ =


p1 log p1

p2 log p2
p3 log p3

. . .

 (17)

and with given tr(ρ log ρ)

S(ρ) = −
∑
i

pi log pi. (18)

This is why von Neumann entropy can be regarded as quantum Shanon entropy. Few immediate
consequences from Eq.(18) about Eq.(16) are that 0 log 0 = 0 and S(ρ) ≥ 0, as we have for Shanon
entropy.

If a bi-partite system in HAB has a pure state

ψAB =
∑
i

√
piv

i
A ⊗ viB, (19)

then we can write for system A

ρA =
∑

pi |ψA⟩ ⟨ψA| , (20)

and for system B

ρB =
∑

pi |ψB⟩ ⟨ψB| , (21)

and so we can see that
S(ρA) = S(ρB). (22)

This is an example of an entangled state, the equality of entropy states the entanglement of A and
B in AB. For the pure bi-partite state we have a vanishing entropy S(ρAB) = 0.

1For explicit discussion on von Neumann entropy see chapter 11 in [3]
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3 Quantum Conditional Entropy, Relative Entropy

We talked about conditional and relative entropy in classical case in section 1, we will now talk
about quantum cases of conditional and relative entropy for von Neumann entropy. The relative
entropy for two density matrices ρ and σ is given by

S(ρ||σ) = tr(ρ log ρ)− tr(σ log σ). (23)

Just as classically, S(ρ||σ) ≥ 0, with equality only possible if ρ = σ. This can be proved using
‘Klein’s inequality’ [5, 6], which states that for A and B

tr(logA− logB) ≥ tr(A−B) (24)

with equality only possible if A = B. Quantum relative entropy is finite, it is only infinite when
the kernel of σ has a non-trivial intersection with the support of ρ.

Conditional entropy in quantum cases can be written for a bi-partite system AB as

S(A|B) = SAB − SB, (25)

where we must say that conditioning an entropy in a quantum sense is nothing like classical condi-
tioning of an entropy. Another interesting fact to notice is that contrary to classical case, quantum
conditional entropy can be negative. Since for a pure system the entropy is zero, so SAB = 0, and
for a not-pure state (or mixed state) the entropy is non-negative, so SB > 0. Hence S(A|B) can be
negative.

Just as classically, we can write mutual information between A and B

I(A;B) = SA − SAB + SB (26)

which can be proven as
SA − SAB + SB = S(ρAB||σAB) (27)

where σAB = ρA ⊗ ρB and ρ = ρAB. And just as classically, fortunately, positivity of relative
entropy implies the positivity of mutual information, which is sometimes called ‘subadditvity of
entropy’. If the mutual information is zero that means there are no correlations between A and B.

We can re-arrange Eq.(25) and write the reversed conditional entropy

S(B|A) = SAB − SA (28)

which is negative as SAB = 0 for a pure state. We can also make a statement that AB is a pure
entangled state only when S(B|A) < 0.
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4 Concavity of Entropy

5 Quantum Cloning and Teleportation

Quantum teleportation [7] can be achieved in quantum mechanics with some methods, which we
will be discussing shortly. It turns out that conditional entropy is essential in knowing about
teleportation, such that S(A|B) ≤ 0 becomes a condition for teleportation.

Suppose we have an entangled state AB which Alice and Bob shares. Let us suppose now that
Alice wants to share another qubit information, let us say C, to Bob. Bob takes out B and goes to
his town. In this case, Alice has to create a state AC in a basis so no information is lost about C.
It can be projected on any of the four bell states

ΨAC =
1√
2
(|00⟩ ± |11⟩)AC (29)

ΨAC =
1√
2
(|01⟩ ± |10⟩)AC . (30)

One thing Alice can do now is to measure ACB and know AC. Suppose AC is found to be

ΨAC =
1√
2
(|00⟩+ |11⟩)AC , (31)

then she can figure out B (from her view) to be

ΨB =
1√
2
(α |0⟩+ β |1⟩), (32)

and now Alice can tell Bob about B and Bob can create ACB with the knowledge about B given
by Alice and B he had. This is how entanglement will work.

One interesting thing about this teleportation is that S(A|B) ≤ 0 is necessary. (In this sense,
one can say that conditional entropy S(A|B) is the amount of additional information that Bob
having B needs to have from Alice to know about A.) To get an idea of how negative information
works [8], remember that S(AB) ≤ S(B) for entangled states. We can presume that S(B) is the
information Bob has, and it is clearly more than S(AB). So Bob knows more. If Alice sends
information about A, which she does using conditional entropy and it can be negative, to Bob,
then Bob ends up with S(AB) which is lesser bits than what he knew before. This is negative
information.

While we can copy unknown classical information, the simplest example is just to copy a digital
file in a computer, we can not clone an unknown quantum information. This is simply called no-
cloning theorem. In fact, the way we did the teleportation is the only accessible way to transfer
information otherwise it is not possible to clone any quantum system as we can classically.
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Figure 2: A somewhat rough diagram of how to achieve teleportation between Alice and Bob.

6 Holevo Information and Bound

Recall that the mutual information between Alice and Bob is given by I(X;Y ) and it is

I(A;B) = SA − SAB + SB, (33)

which was the maximum information attained by Bob (or accessible to Bob). Interestingly, there
is a bound to how much Bob can know through mutual information, this bound is called Holevo
bound [9].

Suppose now that Alice prepares a state from an ensemble ε = {p(x)ρ(x)} and send it to Bob.
The improvement in the information that is with Bob after he tries to know what Alice sent is
given by mutual information. Bob would want to maximize this mutual information, as it would
help in a clear understanding of Alice’s state. We write the Holevo information χ as

χ(ε) = S(ρ)−
∑
x

pxS(ρx), (34)

which is a non-negative quantity (because mutual information is non-negative). This information
is the loss to Bob’s knowledge about Alice’s state after he knows about the specific ensemble that
was used. Holevo information χ also acts as an upper bound to accessible information

χ(ε) = S(ρ)−
∑
x

pxS(ρx) ≥ I(X;Y ), (35)

and the proof of Holevo found can be found in Chapter 12 in ref. [3]. Holevo information and Holevo
bound is very practical in quantum computation and information theory. One can also argue that
Alice can only send n qubits of classical information using n qubits using Holevo bound.

For a pure state χ is just the entropy of density operators while for mixed states χ is smaller.
Another interesting property is the monotonicity of Holevo information. (Though we have not
called out the monotonicity of mutual information in Sec. 1, but it does exist.) Monotonicity of
Holevo information implies that a change of channel using a super-operator2 φ

φ : ε = {p(x)ρ(x)} → ε′ = {p(x) φρ(x)} (36)

2Super-operator does not have any connections with super-algebra or super-symmetry. It is widely used linear
operator (or map) in quantum computing and information theory.
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Figure 3: A binary discrete system with possibilities of error. 0 can end up to 1 with probability p
and 1 can end up to 0 with probability 1− p.

and
χ(ε′) ≤ χ(ε). (37)

7 Noise Channels

Finally, we comment on how we use random codes to get error-free communication [10]. To get an
idea of how these errors arrive, we can see it in a binary system, Fig. 3. We denote the possibility
of errors with λ. Channel capacity C is defined as the maximum allowed mutual information

C = max I(X;Y ) (38)

and C ≥ 0 since I(X;Y ) ≥ 0. We also define rate R as the number of meaningful bits n′ over
number of bits sent n

R =
n′

n
, n > n′. (39)

Channel coding theorem (or Shanon theorem) states that all rates are achievable below the
channel capacity with error probability λ → 0. The converse of coding theorem implies that rates
above channel capacity do not come with low error probability, see sec 7.9 in ref. [1]. We can write
that for low-error probability, and we have a condition to meet

R ≤ C = max I(X;Y ). (40)

This rate is achievable using random codes, which was introduced by Shanon in [10]. Technically,
suppose that we have a code-book of random codes, we then take the average of the probability of
error over a random code from the code-book, which symmetrizes the structure of probability and
which can be used thereafter.
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Encoder DecoderChannel

Figure 4: A representation of transmission of information with least error. First, the message is
encoded and then added to the channel, which must be known by both parties, then the encoded
information is decoded by the receiver to gain the message.

7.1 Hamming Code

A very simple error-free coding would be repetition. For instance, if Alice wants to send a message
1, she would simply send 111, a repetition of 3, if Bob does not get 111 but, for example, 101, then
an error has occurred. However, such simple code does not work for many problems. Hamming
code was introduced for single-bit error correction [11]. Hamming codes work as parity-check codes.

We write numbers in binary form (base 2), 1 is 1, 2 is 10, 3 is 11, 4 is 100, 5 is 101 and so on.
‘Parity bits’ are those bits that are powers of 2 and contain only one 1 bit in the binary form, for
example, 1, 2, 4, 8, 16. Bits other than parity bits are called ‘data bits’. There is two parity - even
and odd. Suppose Alice wants to send 1101001; there are four 1-bit which is an even number. So
Alice would attach, in this case, 0 at the end to make it 8-bits with parity making it to 110100103.
Then Alice computes the modular arithmetic (in mod 2), which, in this case, is 0. Then Alice
transmits the 8-bits to Bob and Bob, after receiving it check the modular arithmetic (in mod 2) of
8 bits which is also 0. Bob confirms the parity of decoding to be even. So there was no error in the
transmission. Transmission with odd parity is just the same, the reader should verify it.

The choice of parity is just a choice, but sender and receiver must know the chosen parity.
Hamming code uses the parity-check concept in it. One might realize that parity-check has a
critical failure in determining the error in even parity as if Alice sends 1010 and Bob receives
1100, then Bob is not aware of the error. The bits that were replaced are called corrupted bits. In
Hamming code, one has a generator matrix G (for encoding) and a parity-check matrix H. A
message by Alice is first encoded with the generator matrix, then a parity bit is added in the way
we did, then it is transferred to Bob, and Bob does the parity-check. Another, a more intuitive
and simple, way to see Hamming code is through the Venn diagram4.

References

[1] T. Cover and J. Thomas, Elements Of Information Theory. John Wiley Sons, 2006.

[2] J. Preskill, “Lecture Notes on Quantum Information Theory,”.
http://theory.caltech.edu/~preskill/ph219/index.html#lecture.

3One can say that it is encoding. After it reaches to Bob, he would decode it
4See sec 7.11 in ref. [1]

10

http://theory.caltech.edu/~preskill/ph219/index.html#lecture


[3] M. A. Nielsen and I. Chuang, Quantum computation and quantum information. Cambridge
University Press, 2002.

[4] E. Witten, “A Mini-Introduction To Information Theory,” Riv. Nuovo Cim. 43 no. 4, (2020)
187–227, arXiv:1805.11965 [hep-th].

[5] M. B. Ruskai, “Inequalities for quantum entropy: A review with conditions for equality,”
Journal of Mathematical Physics 43 no. 9, (Sep, 2002) 4358–4375, arXiv:0205064 [quant-ph].

[6] E. Carlen, “Trace inequalities and quantum entropy: an introductory course,” Entropy and
the quantum 529 (2010) 73–140.
http://www.mathphys.org/AZschool/material/AZ09-carlen.pdf.
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