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Preface

Quantum mechanics is believed to be a abstruse subject of physics. The foremost
reason for that is abstractness that it bore. This book (which are my personal notes
of quantum mechanics) is not unique than most of contents written on quantum
mechanics. However, it is a slightly different approach to quantum mechanics.
There are many works that had been done in quantum mechanics, we can not com-
pile the all. But we only mention major developments, which include the ideas of
interpretations, wave function, operators, Schrodinger equation, Linear algebra,
angular momentum and spins, pictures in quantum mechanics (Heisenberg and
Schrodinger), energy levels and systems. There are three short appendices. This
book is mostly self-contained and contain no exercises. The material gets advance
by every chapter.

We, however, do not report on perturbation theory, which is a very important
development in quantum mechanics and field theory. What we not cover are-
investigation of Hydrogen atom, effects of angular momentum. We do include the
Hamiltonian correction.

I believe that this subject is so whole and so important for what comes next
in physics. Without quantum mechanics, one could not think of string theory,
which is a major work in progress in physics. An amateur physicist is likely to
question quantum mechanics, but that is natural. The idea is to take abstractness
mathematically and enjoy it.

- Aayush Verma
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Background

This brief chapter introduces the reader to a few mathematical concepts. How-
ever, the reader might skip it if already aware of these. Quantum mechanics deals
with a lot of differentials and partial differential. One should know how to solve
them. Solving the partial differential equation (PDE) concerns finding the wave
functions, eigenvalues, and more in quantum mechanics. A first-order PDE looks
like

∂x
∂y

= z. (0.0.1)

One of the nicest PDEs is the three-dimensional Schrodinger equations, which
we will discuss in chapter 1. We also encounter Fourier transformations and the
Fourier series in this book. It is technical to define them. Simple is that they
decompose the functions to work in the space and time desired. For instance, a
piano can have different music from the same key in different frequencies. We
will encounter it when we desire to change from position space to momentum
space.

A four vector aµ is a vector in four-dimensional space-time, where µ=(0,1,2,3).
This vectors are used when we discuss relativity and geometry. Note that (0 = t)
and (1 = x,2 = y,3 = z), where t is time dimension and x,y,z are spatial dimen-
sions.

We will also use most linear algebra. A particular chapter is dedicated to it,
chapter 4.

Readers must be acquainted with methods to solve integral equations as well.

15
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It would be a bonus if computing is done through many parts with software like
Mathematica and Matlab.
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“This whole book is but a draught nay, but the draught of a draught.” - Herman
Melville
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And Linear Algebra
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Chapter 1

A Brief Sketch of Quantum
Mechanics

”If we think we understand quantum mechanics, we don’t understand quantum
mechanics.“ - Richard Feynman

This chapter will be dedicated to introducing this theory, with more minor mathe-
matics but more intuition. Any physical theory must have two properties- first, it
should give us results and some more information about this universe, and second,
it should be testable. However, in the case of Quantum Theory, some of the pre-
dictions are just predictions, and they can never be tested experimentally. Mainly
due to intelligence insufficiency. Quantum mechanics is a theory of low scale and
high energy.

1.1 Particle and Wave

The universe is fundamentally made up of particles and anti-particles. However,
we will be mainly discussing particles, and these particles function the whole
universe. It can be fermions or bosons. To be clear, Fermions are particles that
have half-integer spin, as an example ±1

2 . Moreover, the Bosons which have

21



22 CHAPTER 1. A BRIEF SKETCH OF QUANTUM MECHANICS

whole number spin. We will discuss Spins later. Fermions comprise of Leptons
and Quarks, both leptons and quarks are of 6 kinds. Leptons are like the electron,
the muon. See Appendix 3.

There are six quarks- up, down, charm, strange, top, bottom. These quarks,
when added form particles like proton and neutron.

Bosons are, usually, carriers of fundamental forces, Photons carry Electro-
magnetic force, W and Z bosons for Weak Force, Gluon for Strong interaction
and hypothetical particle Graviton 1 for Gravitational force. Coming to wave,
waves in my sense is a disturbance. Electromagnetic waves are the propagating
waves with the velocity equal the speed of light. It was believed that light is a
wave, albeit Newton proposed his theory of corpuscles. Physicists believed that
waves and particles are different theories. They believed a wave is just a wave,
and a particle is just a particle with different treatments. But this tradition was
broken with the Einstein Paper on the Photoelectric Effect 2 which proved that
light was the stream of many particles, at that time it was called “quanta”. As
like this, in 1924, de Broglie proposed his hypothesis that every matter is dual to
a wave-theory with λ = h

p . This was shown in the Double Slit Experiment, first
done by Thomas Young in 1801, which proved that light and matter can show
both particle and wave properties. This opened a gate to a new theory that be-
came Quantum Theory. Quoting a remark of Albert Einstein on the theory: “his
double nature of radiation (and of material corpuscles) ... has been interpreted
by quantum-mechanics in an ingenious and amazingly successful fashion. This
interpretation ... appears to me as only a temporary way out..,”.

This shows the disagreement of Einstein over quantum theory, we will dis-
cuss later the paper Einstein (and his colleagues) wrote condemning the wave-
functions. It is now a strong fact that wave and matter are just different forms of
the same component, and we can jump to our next section, which is wave function.

1Graviton is just a hypothetical particle and not yet experimentally found, to unify the force
this particle was introduced.

2Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesicht-
spunkt, A. Einstein, Annalen der Physik Volume 322, Issue 6
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1.2 Wave Function

ψ (psi) is the term we use to determine the wave function, now for the new reader,
it can be a little confusing as it does not provide enough description about it ini-
tially, but as we go we will understand these mechanics itself. For now let us call
ψ a function of our wave with parameters x,t. ψ(x, t) is complex, but we will see
later that this can be chosen real 3 in some conditions. To understand this concept,
let us say that we have a particle P, now what classical mechanics teaches us that
position of a particle can be defined as x(t), momentum with mv, the force with
m d2/dt2, velocity by dx/dt.

But in Quantum Mechanics we deal with these things with a little different
approach. As in classical mechanics we look for m,x and p, in quantum mechanics
we have to hunt ψ(x, t), and we get it by solving the most fist and popular equation
i.e Schrödinger Equation.

iℏ
∂ψ

∂t
=

−ℏ2

2m
∂2ψ

∂2t
+V ψ (1.2.1)

Where i2 is −1 and ℏ is a reduced Planck’s constant:

ℏ=
h

2π
(1.2.2)

Here h = 6.26×10−34Js and ℏ= 1.054×10−32Js.

Now, what exactly this Schrödinger Equation is? It is a complete analogy of
Newton’s Second Law of motion. Schrödinger Equation tells us that how ψ(x, t)
evolves. And You will use how to use it in the later section and how to prove
it. These wave function can be both of position space and momentum space,
ψ(x, t) and φ(k, t) respectively.4 But before taking a look at them we have a lot of
unfinished sections to complete.

3By real here, we mean we can choose the energy eigenstates to be real
4Time parameter can be eliminated for the sake of simplicity
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1.3 Interpretations

Interpretations are a cool feature of Quantum Mechanics, but what is it?

Quantum Interpretations are just different views, different views of the field.
Every person can choose their interpretation or can make one. Nevertheless, as
someone reading quantum mechanics must know about interpretations of the sub-
jects. There are many interpretations, and we are mentioning some here.

Copenhagen Interpretation - This interpretation is far popular and mostly
picked among physicists. This explains to us that a ψ is not any single object,
albeit it is a superposition of many eigenstates and eigenvalues. When we observe
our wave function, then it collapses to a single result and an arbitrary solution
is given. So it is meaningless to ask about, ”Where was our particle before the
observation?”

This interpretation is not so easy to catch, but indeed this interpretation is one
of the fascinating things about Quantum Mechanics. Also the most debated one.
We mostly do not talk about interpretations when we talk about the abstract nature
of quantum mechanics, but it was one of the major philosophies behind quantum
mechanics in the early years.

Now, there must be some probability to find the particle around some coordi-
nate in space, yes there is a Statistical Interpretation of the very quantum system.
|ψ(x, t)|2 tells us about the probability of the particle at position x and time t. Well,
a more rigor equation for this same purpose is:∫ b

a
|ψ(x, t)|2dx (1.3.1)

Equation 1.3.1 is for nothing but just finding the wave-function statistics distribu-
tion between a and b at time t. And when the particle is observed, the whole wave
function gets collapsed to one arbitrary point.

Let’s assume that Fig. 1 is our wave function, a typical one, there can be many
wave functions according to states. As we can see that wave function localize at
points 1.5, 7.5 and 13.5, at least roughly. So we can say that particles are more
likely to be found at anti-nodes rather than 4.6 and 11. But this figure visualizes
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Figure 1.1: Fig. 1, A typical wave function ψ(x, t)

the wave function before the observation. Now the Eq. 1.3.1 will guide us through
this complex ψ, y-axis (horizontal) is |ψ(x, t)|2 and x-axis is just the x. The inte-
gral will tell us the area under the graph. For example, the probability of finding
the particle between 1 and 4 will be given by Eq. 1.3.1, now that will be the prob-
ability of finding the particle between 1 and 4. After the observation, it will be
more like Fig. 2, where the whole function localizes to a point, in this case, it is
1.5. Hence the particle has found at position 1.5. This tells us that the whole wave
function is just crunched into a single line and that is a fascinating thing about
this. Copenhagen’s interpretation is a spooky thing, as called by a great physicist,
but it is reasonable if we believe in this quantum abstractness. The critiques of
this interpretation are powerful and believed to be true, and in fact, there are many
paradoxes of this interpretation. One famous is Einstein advocated EPR.

Jordan once said, ”Observations not only disturb what is to be measured, they
produce it”, well technically, this interpretation take a stand to the theory of inde-
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Figure 1.2: Fig. 2, Wave function ψ(x, t) after collapse

terministic result. Hence, it is not logical to ask about the pre-conditions of the
particle before the measurement. There was a great debate on this book, yet it is
going on. ψ is not the complete story, there are hidden variables also, discussed
in brief in the later section.

Now what happens for the second observation to this system, will it produce
the same result?

Well, maybe or not, Quantum Mechanics is known for this total loss of deter-
minism. We can get the same result or different results. And this is the fact which
Einstein criticized the most.

Many authors have already written about those things, but we are going to pro-
pose a thought experiment, indeed a thought experiment in Quantum Mechanics.
Imagine a house in which 1 people live, now there are many rooms, let’s say 5 and
we go inside the house, we are on the hall floor. Now in which room we are likely
to find the person, in his bedroom, but he can be anywhere else!

Unless and Until we do not see that person in a room, we can just assume
that the person is in here or there. But when we find him/her, then we can finally
believe. Let’s say that person is found in the lab room. So the whole probability
of thoughts in your mind collapses to the one single result of the lab room. Now
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take the house as the wave function, the person as the particle and rooms as their
positions. Just make the complete analogy stating that we come again after 1 hour,
then the story repeats. We will not tell us that both the house and wave function is
the same, but we are just making an analogy, we hope it helps.

Many Worlds Interpretation

- Everett’s thesis introduction reads:

”Since the universal validity of the state function description is asserted, one can
regard the state functions themselves as the fundamental entities, and one can
even consider the state function of the entire universe. In this sense, this theory
can be called the theory of the ”universal wave function,” since all of physics is
presumed to follow from this function alone”

Before introducing the term to us, we would like to show we the conversation
of two physicists.

Ray Streater writes to Everett:

”The idea of the wave-function of the universe is meaningless; we do not even
know what variables it is supposed to be a function of. We find the laws of nature
by reproducible experiments. The theory needs a cut, between the observer and
the system, and the details of the apparatus should not appear in the theory of the
system”

Hugh Everett writes in response:

”If we try to limit the applicability so as to exclude the measuring appara-
tus, or in general systems of macroscopic size, we are faced with the difficulty of
sharply defining the region of validity. For what n might a group of n particles be
construed as forming a measuring device so that the quantum description fails?
And to draw the line at human or animal observers, i.e., to assume that all me-
chanical apparatus obey the usual laws, but that they are not valid for living ob-
servers, does violence to the so-called principle of psycho-physical parallelism”



28 CHAPTER 1. A BRIEF SKETCH OF QUANTUM MECHANICS

Coming to the point of Many Worlds Interpretation introduced by Everett,
this regards the whole universe as a wave function and there is no wave function
collapse. This is a whole opposing interpretation of Copenhagen Interpretation.
Albeit it is popular but less believed. The main idea is that there are infinite
number of universes each with their correspondence wave functions. When we
observe the wave function, we generally see the result in one universe. This is
done by Quantum De-coherence (discussed more in later sections). This is a little
crazy, but the whole idea just transpose the thing that we have discussed. Although
we are not going too deep here at this interpretation.

De Broglie–Bohm theory - The last interpretation which we will talk, which
also treats wave function collapse as an illogical fact. Known as pilot-wave theory,
this theory emphasizes that particle have a configured space even when they are
unobserved. And the velocity of the particle is given by the guiding equation:

dQ(t)
dt

=
ℏ
m

Im(
∇ψ

ψ
) (1.3.2)

dQk(t)
dt

=
ℏ
m

Im(
∇ψ

ψ
(Q1,Q2,Q3...Q4, t)) (1.3.3)

The configuration Q guides eq. (1.3.2) and Eq. 1.3.3 hold for many particles
systems. Well, these equations more look like the current density

J(x, t) =
ℏ
m

Im(
∂ψ∗

∂x
) (1.3.4)

Here, Im is the imaginary part and ψ∗ is said to be conjugated. We will discuss
Current Density and Probability Density more in later.

1.4 Normalization

As we have discussed that the probability current is,∫ +∞

−∞

|ψ(x, t)|2dx (1.4.1)
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But there must be some value for this function, and it is 1,

int+∞
−∞ |ψ(x, t)|2dx = 1 (1.4.2)

What does that mean?, it means that the probability of finding the particle between
the region is 1, well it must be 1, because your particle is just at one place at a
time, logically.

Not every function is normalized when it is given to we, but we can normalize
it by putting a constant at the begging,

A2
∫ +∞

−∞

|ψ(x, t)|2dx = 1 (1.4.3)

Well, A doesn’t do anything to our solution, because if ψ(x, t) is a solution then
Aψ(x, t) is also a solution, that is called linearity. Now, if ψ(x, t) is a normalized
wave function at t, then what is the grantee of it being normalized during whole
time. Let’s check,

d
dt

∫ +∞

−∞

|ψ(x, t)|2dx (1.4.4)

By Leibniz rule, ∫ +∞

−∞

∂

∂t
|ψ(x, t)|2dx (1.4.5)

∂

∂t
|ψ(x, t)|2 = ∂

∂t
(ψ∗

ψ) (1.4.6)

Which then equals, by product rule,

ψ
∗∂ψ

∂t
+

∂ψ∗

∂t
ψ (1.4.7)

By Schrödinger Equation,

∂ψ

∂t
=

iℏ
2m

∂2ψ

∂x2 − i
ℏ

V ψ (1.4.8)

∂ψ∗

∂t
=− iℏ

2m
∂2ψ∗

∂x2 +
i
ℏ

V ψ
∗ (1.4.9)

Then,
∂

∂t
|ψ(x, t)|2 = iℏ

2m
(ψ∗∂2ψ

∂x2 − ∂2ψ∗

∂x2 ψ) (1.4.10)
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Which then equals to,
∂

∂x
[

iℏ
2m

(ψ∗∂ψ

∂x
− ∂ψ∗

∂x
ψ)] (1.4.11)

Now explicitly,

d
dt

∫ +∞

−∞

|ψ(x, t)|2dx =
iℏ
2m

(ψ∗∂2ψ

∂x2 − ∂2ψ∗

∂x2 ψ) (1.4.12)

evaluated at −∞,+∞, now wave function must go to zero as x goes to ±∞, oth-
erwise the wave function would not be any normalizable, then it is clear than the
integral is zero,

d
dt

∫ +∞

−∞

|ψ(x, t)|2dx = 0 (1.4.13)

hence the integral is independent of time, so if any wave function is normalizable
at any particular time, then it is normalized at every time.

What if a wave function is not normalized?

If a wave function cannot be normalized, then it does not represent any par-
ticle, although it can be used in quantum mechanics. But in most calculations, a
wave function must be normalizable.

1.5 Operators and Commutators

Now this part will be more mathematically than any part above. The motivation
to read is the Schrödinger Equation, because that equation is intuitively get when
derived with operators.

Operator is that mathematical object which acts on a function to given an
eigenvalue. They are denoted by a hat in top. This definition is deeply influenced
by Quantum Mechanics. And the eigenvalues will be discussed later in Chapter 4.
More mathematically, an operator is a mapping between functions in its domain
and functions in its range, and our domain and range are both in Hilbert Space5.

5Hilbert Space is a physics space where wave functions live
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So we can say in my definition that ”Operators are nothing more than imposer and
giver of a value”.

Some examples of the operator in Quantum Mechanics is x, p and H. We will
come to that when we will derive Schrödinger Equation in next chapter and a little
bit here.Let us play with operator X and P acting on psi, where P is equal to ℏ

i
∂

∂x

P̂ψ(x, t) =
ℏ
i

∂ψ(x, t)
∂x

(1.5.1)

By idea,
P̂ψ(x, t) = pψ(x, t) (1.5.2)

Here, p is the eigenvalue and P̂ is a momentum operator.

Now these operators can be differential equations as well,6, they might or
might not commute with each other. We call these commutators. It is defined by,

[A,B] = AB−BA, (1.5.3)

here A and B are operators. We will exploit these commutators in every chapters
ahead.

[x, p] = iℏ. (1.5.4)

6Because differential operators acts with their right according to their parameters.
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Some useful commutator rules if A, B and C are operators and n is con-
stant,

[A,B] =−[B,A]

[A,B±C] = [A,B]± [A,C]

n[A,B] = [nA,B] = [A,nB] (1.5.5)



Chapter 2

Mach–Zehnder Interferometer

Interferometer is a tool for optics, but it is always kind of a game that Quantum
Mechanics enjoys, but with an add of loss of determinism and matrix play. So a
rough kind of interferometer is depicted in Fig 2.1 .

2.1 The Interferometer

BS1 BS2

MM

M

D0

D1

Figure 2.1: Mach-Zehnder Interferometer
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Here is depicted is a couple of beam splitters (BS1 and BS2) and two mir-
rors (one up and another at down), and at last two detectors (D0 and D1). This
is a rough kind of design. And two ways to push the particle. Before we start
experimenting without doing experiments, we need to adopt the Quantum Inter-
pretations. The δ is a phase-shifter.

We of course start with probability amplitude whose norms are point of con-
cern. We can construct a matrix of probability of particle coming either upper or
lower beam. (

α

β

)
(2.1.1)

Where α is always the probability of entering the particle from upper beam and
β of the opposite. We can make a complete analogy of Normalization and hence
state particle, here as photon must be anywhere, so

|α|2 + |β|2 = 1 (2.1.2)

Hence, two possibilities,

1. Photon from upper beam
(

1
0

)
2. Photon from lower beam

(
0
1

)
we can check

the Eq 1.2 criteria, that means they are well-normalized. You can also create a

superimposed one,

(
1√
2

1√
2

)

Short hand Exercise Express Eq 1.2 into a superposition of two possibilities
that we have mentioned above.

Let us get to the phase-shifter in the Fig 2.2, that phase-shifter (assuming that
the reader know what a phase is) is, so once a particle (wave amplitude) α hits the

Figure 2.2: Phase

phase, it becomes
α → eiδ

α (2.1.3)
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where δ is this sense is merely just a phase contributing to α. So when reflection
reflects a particle with π the phase become eiπ which is -1 and the overall ampli-
tude −α which is pretty best agreement with the later discussion on reflection and
scattering.

Let’s now move on the experiment. So a particle in the form of
(

α

β

)
hits the

BS1 (Beam Splitter), now a beam splitter can split the particle either to upper path
to lower path. If photon comes to BS1 using upper beam or lower beam we use(

1
0

) (
0
1

)
respectively to represent it.

We now make four-channel a, b, c and d. Channels a and b for the upper
branch and channels c and d for the lower branch. Where for the upper branch, a
can be seen as reflection, and b can be seen as transmission (coefficient). Same
with c and d for the lower branch.

Hence when
(

1
0

)
hits the BS1

(
1
0

)
→
(

a
b

)
(2.1.4)

and (
0
1

)
→
(

c
d

)
(2.1.5)

Now, as (
α

β

)
= α

(
1
0

)
+β

(
0
1

)
(2.1.6)

so replacing the Eq 1.6 with Eq 1.4 and Eq 1.5,(
α

β

)
= α

(
1
0

)
+β

(
0
1

)
→ α

(
a
b

)
+β

(
c
d

)
(2.1.7)

which can be written as (
αa+βc
αb+βd

)
=

(
a b
c d

)(
α

β

)
(2.1.8)
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The matrix
(

a b
c d

)
is the calculation we have to do. There is a defined parameter

already set for that matrix. Because of Eq 1.2, we have

|a|2 + |b|2 = 1 (2.1.9)

|c|2 + |d|2 = 1 (2.1.10)

The beam splitter we have to use is balanced so coefficients of probability of
reflection and transmission is same, hence we use the norm

|a|2 = |b|2 = |c|2 = |d|2 = 1
2

(2.1.11)

So, the matrix can be constructed as the value of ± 1√
2
. We will try the simplest

one which is (
a b
c d

)
=

(
1√
2

1√
2

1√
2

1√
2

)
(2.1.12)

But this kind of matrix is harmful for normalized wave function as we will see(
1√
2

1√
2

1√
2

1√
2

)(
1
0

)
=

(
1√
2

1√
2

1√
2

1√
2

)(
0
1

)
=

(
1√
2

1√
2

)
(2.1.13)

While that works, let us see a different example(
1√
2

1√
2

1√
2

1√
2

)(
1√
2

1√
2

)
=

(
1
1

)
(2.1.14)

But as we see the Eq 1.2 this is not satisfied. So the matrix is not Eq 1.12. But
what it can be?

A slight change in d where we swap the sign can yield a better matrix.(
1√
2

1√
2

1√
2

− 1√
2

)
(2.1.15)

It can be checked that it is good for BS1, and has a good agreement with all our
previous statements. The - minus there is for reflection that we discussed over,
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but only when there is higher refractive index (unfortunately we will not go in
details). And then pretty much the content after hitting the beam splitter is(

1√
2

1√
2

1√
2

− 1√
2

)(
α

β

)
=

1√
2

(
1 1
1 −1

)(
α

β

)
(2.1.16)

which is
1√
2

(
α+β

α−β

)
(2.1.17)

we can check that 1√
2
|α+β|2 + 1√

2
|α−β|2 = |α|2 + |β|2 = 1, that is a quite

exercise.

And then, the experiment proceeds it gets reflected toward the next BS2 by the
mirror. The same strategy for BS2 can yield a similar matrix.(

− 1√
2

1√
2

1√
2

1√
2

)
(2.1.18)

You can check it also by using the same technique and analysis. So we have

now two encounters with
(

α

β

)
that will be,

(
1√
2

1√
2

1√
2

− 1√
2

)(
− 1√

2
1√
2

1√
2

1√
2

)(
α

β

)
(2.1.19)

which can be further down to

1√
2

(
1 1
1 −1

)
1√
2

(
−1 1
1 1

)(
α

β

)
(2.1.20)

then,
1
2

(
0 2
−2 0

)(
α

β

)
=

(
0 1
−1 0

)(
α

β

)
(2.1.21)
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which eventually leads to our final result that is(
β

−α

)
(2.1.22)

So here we have a better-computed result from which we can immediately
extract the answer.

BS1BS2

(
α

β

)
=

(
β

−α

)
(2.1.23)

So when we put
(

0
1

)
then the result will be

(
1
0

)
that means the probability of

finding the photon at D0 is 1 and D1 is 0. So clearly if all things perfoms well,
out photon will be at D0.

Input:
(

0
1

)
Output:

(
1
0

)

2.1.1 Some Other Test

We can also perform another test as in Fig 2.3, where we block the lower branch,

then the probability changes. So our photon with
(

0
1

)
hits the BS1 then

1√
2

(
−1 1
1 1

)(
0
1

)
=

(
1√
2

1√
2

)
(2.1.24)

But after that only upper beam proceeds, then the matrix will be

(
1√
2

0

)
and
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BS1 BS2

MM

M

D0

D1

Figure 2.3: Blocking the path, changes the probability of same photon.

then it hits the BS2, then it will be like 1√
2

(
1 1
1 −1

)( 1√
2

0

)
and then last proba-

bility will be
(1

2
1
2

)
.

Hence we see that blocking one path will give us an equal probability of find-
ing the photon at either of the detectors. So we see that before not blocking the
path, we could not get photon at D1, but here we are with forcing physics to work.
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Chapter 3

Schrödinger Equation

”Where did we get that (equation) from? Nowhere. It is not possible to derive it
from anything we know. It came out of the mind of Schrödinger.”

- Richard Feynman

3.1 The Building of the Equation

Schrödinger Wave Equation was given by Erwin Schrödinger, In January of 1926,
Schrödinger published in Annalen der Physik the paper ”Quantisierung als Eigen-
wertproblem” and this is now known that the famous Schrödinger Equation, which
is none other than a complex mathematical equation with lots of space-time deriva-
tive and Hamiltonian;

iℏ
∂ψ

∂t
=

−ℏ2

2m
∂2ψ

∂2t
+V ψ (3.1.1)

Hψ =
−ℏ2

2m
∂2ψ

∂2t
+V ψ (3.1.2)

Hψ = Eψ (3.1.3)

41
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Where, H is Hamiltonian, T is kinetic energy and V is potential energy

H = T +V (3.1.4)

H =
p2

2m
+V (x) (3.1.5)

Well in Eq (3.1.3) we can observe the operator’s operation. These are some com-
mon forms of the equation in one-dimension and in 3-dimensions it becomes,

iℏ
∂ψ

∂t
=

−ℏ2

2m
∇

2
ψ+V ψ (3.1.6)

∇
2 =

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (3.1.7)

3.2 Derivation

In this section, we will do the most awaited thing. We will be deriving the equation
with the help of the basic kinds of stuff in one-dimensional space and time t. For
the sake of readers, we will not extend the proof, we will try to keep it simple.
Before moving on we will take the solution to be,

ψ(x, t) = eikx−iwt (3.2.1)

Here, k is wave number and w is the angular frequency. What is a Hamilto-
nian?, It is nothing other than our total energy system which we can denote by

H =
p2

2m
+V (x) (3.2.2)

Here, p is moementum, m is mass and V is potential of the system. As we have
discussed in the section 1.4 that p is also an operator with value,

p̂ =
ℏ
i

∂

∂x
(3.2.3)



3.2. DERIVATION 43

In Eq (3.2.2), there is p squared, so we can take p as a momentum operator. Now
that Ĥ is also an operator, let us act it on wave functionψ(x, t)

Hψ =
p2

2m
ψ(x, t)+V (x)ψ(x, t) (3.2.4)

Now expanding the operator p-squared

p̂2 =
ℏ
i

∂

∂x
· ℏ

i
∂

∂x
(3.2.5)

p̂2 =−ℏ2 ∂2

∂x2 (3.2.6)

As i2 is -1, now let us apply the result to the Eq 2.9

Hψ =
−ℏ2

2m
∂2ψ(x, t)

∂x2 +V (x)ψ(x, t) (3.2.7)

And here our result is, the Hamiltonian action on the wave fucnction, but what the
left hand side of Eq (3.1.1). For that,

E = ℏω (3.2.8)

Eψ = ℏωψ (3.2.9)

∂ψ

∂t
=−iwψ (3.2.10)

Now in Eq (3.2.9), let us multiply both sides by − i
ℏ , then it contributes to,

− i
ℏ

Eψ =− i
ℏ
ℏωψ (3.2.11)

− i
ℏ

Eψ =−iωψ (3.2.12)

Using Eq (3.2.10), one can replace −iw,

− i
ℏ

Eψ =
∂ψ

∂t
(3.2.13)

In more general,

Eψ = iℏ
∂ψ

∂t
(3.2.14)
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And since Eψ = Hψ

iℏ
∂ψ

∂t
=

−ℏ2

2m
∂2ψ

∂2t
+V ψ. (3.2.15)

And that is our result in most simple way, now this is not only the solution, there
can be many solutions to the equation. But we will for now just look at time
dependent wave equation. In next section, we will talk about the applications of
this wave equation and how it is useful.

3.3 Applications of the Equation

There are many applications of this equation as it is the most precise and powerful
equation in Quantum Mechanics. Not only the Quantum Mechanics, but many
fields in physics take help from Schrödinger Equation. Here we will discuss some
important application of this equation in non-relativistic quantum mechanics.

3.3.1 Energy Level

The most important application is finding Energy levels of the quantum particle.
In fact, the equation was set-up in need of energy eigenstates and eigenvalues. So
it is not surprising that if Hamiltonian H is in the equation as an operator so it must
give eigenvalues of Energy. As it is a second-order linear differential equation, it
may be sometimes easy and sometimes hard to find the energy levels of particles.
But using Eq 2.21 and Eq 2.2, which are almost the same but in different forms,
one can find the energy level. We will talk more about this as we will discuss the
basic potential cases in non-relativistic quantum mechanics.

3.3.2 Space, Momentum and Time

If we have wave function at position x, we can find its position in space at t = t0
using the Schrödinger Equation. And similarly, we can find when that equation
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evolves at a particular time.

Note: This does not mean that we can trace the particle, we can just trace nature
the wave function which is similar to the below figure. We are more or less just
drawing the wave-diagrams.

Figure 3.1: Wave diagram.

In the figure (3.1) we can see that at any point the wave function has some
value, so as we go along x-axis we see the evolution of wave function which
results in quantum mechanics and Schrödinger equation helps to find those space,
time and momentum parameters when needed.
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3.3.3 Measurement and Uncertainty

In classical mechanics, position and all that classical physics are deterministic
means we can find them at any time in space. But in Quantum Mechanics, we
don’t have that certain and precise position and energy results. As we have read
Copenhagen is an unbeaten army to perfect result. So Schrödinger Equation de-
terministically guides us about the wave function and allow the probability in.

3.3.4 Quantization

Quantization refers to the transition of view and mathematics from classical for-
malism to the quantum mechanical. We try to quantize everything now, from
gravity to motion. Sometimes we fail and pass. Quantizing gravity is a part of the
Fundamental Theory of Physics.

There are two kinds of Quantization, First Quantization and Second Quanti-
zation. In First Quantization it is particles which are thought and treated as wave
functions, but the overall system except the Wave Function is still dealt classi-
cally. It is generally used for single systems. For multi systems, we have Sec-
ond Quantization, it is kind of canonical quantization (for mostly free interaction
system) in which fields are thought of as field operators. It is vastly a tool for
Quantum Field Theories.

Of Course not only equations, Simple Harmonic Oscillators (discussed later)
is also very helpful in Quantum Field Theories.



Chapter 4

Linear Algebra and Spaces

”Algebra is generous; she often gives more than is aksed of her.”
- Jean le Rond d’Alembert

This chapter will be an introduction to Linear Algebra that is language in which
Quantum Mechanics is often written. This one is going to be the longest in this
monograph. A short discussion about momentum and position space has been
given, but if one want to start the Linear Algebra, the reader may jump to section
4.2.

4.1 Momentum and Position Space

Every aspiring physicist has some difficulty at quantizing the momentum and
space for its practical and theoretical uses in Quantum Mechanics. Momentum
and space are two important views of seeing any phenomena in the quantum
world. But these two views are interconnected with each other through Fourier
Transformation. Which helps us to understand the view by chaining into one and
another and still get the perfect result that we want.

[x, p] as we discussed later is iℏ, that means, xp− px = iℏ. The convention
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while doing this transformation is the basis sum convention, our book is not ex-
ception. We start with, a wave function ψ(x) and write it in terms of basis and
momentum space φ(k)

ψ(x) = ∑
j

φ(k)ψ j(x) (4.1.1)

or
ψ(x) =

∫
momentum−space

φ(k)ψ j(x)d3k (4.1.2)

where ψ j(x) is by calculation using matrix laws

ψ j(x) =
1

(
√

2π)3
eik·x (4.1.3)

that makes up Eq 4.1.2, which is integration under momentum space or k space.

ψ(x) =
∫

k−space

1
(
√

2π)3
eik·x

φ(k)d3k (4.1.4)

This is what we want. Though the prove is so trivial type, but for now, this should
be satisfactory for new ones. This is called Fourier Transformation. It is actually
a connection between position space and momentum space.

Eq 4.1.4 can also be written as

φ(k) =
∫

x−space

1
(
√

2π)3
e−ik·x

ψ(x)d3x (4.1.5)

these two equations are very insightful mathematics which helps the very applica-
tion of quantum problems, we will see it later.

4.2 A First Look at Linear Algebra

In this section and remainders of the chapter, it is all about Linear Algebra, which
is a language which is mostly spoke in Quantum Mechanics and advanced physics.
It is perhaps the best algebra, which will entertain we. Not only Quantum Me-
chanics, but Linear Algebra has it roots in every modern theories and mathemat-
ical subject. Though we will only try to implicate the necessary algebra, but for
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a good reading, one can check Linear algebra done right by Sheldon Axler and
Barton Zweibach section Notes.

One start with Vector Spaces. You have studied vectors, but linear algebra
takes it to a further step by creating a whole new space, and incidentally it is
called Vector Space. It can be seen as a collection of vectors, but follows some
rules. These rules cum better conditions described for vector space V are,

1. If u ∈ V and v ∈ V then u+ v ∈ V .

2. There are elements from F , such that av ∈ V where a ∈ F and v ∈ V

3. Three elements (vectors) from V , let us say u, v and w, then, u+(v+w) =
(u+ v)+w

4. There is an additive identity i.e 0,v ∈ V , then 0+ v = v ∈ V

5. The number 1 ∈ F satisfies 1v = v

6. For each v ∈ V there is a u ∈ V , where u is inverse of v, such that v+u =
0 ∈ V

7. For number a and two vectors u and v, we have, a(v+w) = av+ aw. And
for two numbers a and b and a vector v, (a+b)v = av+bv

Hence V is a vector space satisfying the addition rule of vectors, having an iden-
tity vector, having a 0 vector and multiplying any number with vector, just yield
the scaled vector from same vector space.

Most of the claims are very self-realizing, such as 0 vector thing and identity
thing.

There are very known algebras and mathematical systems which can be thought
as Linear Algebra. But first why Linear Algebra?

It may be thought as a language of Quantum Mechanical descriptions. One
can’t offer anyone to talk unless he uses this mathematical tool of algebra. In fact,
few theories requires it’s own algebra, Supersymmetry is one of them. However,



50 CHAPTER 4. LINEAR ALGEBRA AND SPACES

one should not think of Linear Algebra as a Quantum tool, but one may think of
as a language that we use when discussing this subject.

But there is question which we must ask first before proceeding. Where do
wave functions live? This is most important and too subtle right now for us to ask,
maybe stubborn as well. The answers lies in the root of this very algebra.

4.3 A Simple Kind of Vector Space

We must emphasize that while the numbers, in F are sometimes real or complex,
we never speak of the vectors themselves as real or complex. A vector multiplied
by a complex number is not said to be a complex vector, for example! The vectors
in a real vector space are not themselves real, nor are the vectors in a complex
vector space complex. A few examples of vector space are:

1. A Set of Vector 
x1
x2
x3
...

xn

 (4.3.1)

where xi ∈ VR , it is simply a real vector space that spans the matrix.

2. A Set of infinite sequences, so xi ∈ F

3. A Complex Matrix with Complex entries, of M × Na11 a12 . . . a1M
...

aN1 aN2 . . . aNM

 (4.3.2)

where ai j ∈ VC is a complex vector space.

There are so many different vector space and basis in mathematics and physics.
Such as sets of polynomials, sets of complex function, or even a superimposed
Wave Function can be treated as a vector space.
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4.4 More About Vectors!

Now for every set there is a sub-set, for every discipline there is a sub-discipline
and for every physicist there is prejudice1. So, for every vector spaces, there are
sub-spaces from which a vector space is constructed.

V =
j

∑
i=1

Ui (4.4.1)

so it can be easily seen that v ∈ V can be written as ∑
k
i ui where ui ∈ U.

One also do have an option of creating lists of Vectors of finite length as well
as dimensional,

(
v1 v2 v3 ... vn

)
.

A basis of vectors V, is simply a collector or list of vectors in the vector
space, which do need to span the V. They are linearly dependent and can gen-
erate all the other elements of the vector space.

Note: Dimension of a vector space can be configured using the length (or
entries) of vectors in any basis.

4.5 Dirac Notation

Now it is an appropriate time for introducing the arithmetics 2 of Quantum Me-
chanics, which is Bra-Ket Notation. It was first intoduced by Paul Dirac in 1939.

Usually, we have two things to discuss by breaking the word Bracket. ”Bra”
and ”Ket”, now we are not going to miss the chance to throw the joke, We don’t

1Sorry, but I am not a poet.
2Not the genuine one, but it can be said as alphabets, though sine quo nan
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know where C is! trust me, we don’t.

|α⟩− ket (4.5.1)

⟨β|−bra (4.5.2)

|α⟩ is just a vector representing a state, there are many notations which replaces
the α, primarily, it will be a state ket, like |ψ⟩, |n⟩, etc. So, as like vector, our ket
can be written as,

|α⟩=


α1
α2
α3
...

αn

 (4.5.3)

and the definition, we adapt for our bra is, they are simply conjugates of some
state, for this matter, let us say β.

⟨β|=
(
β∗

1 β∗
2 β∗

3 . . . β∗
n
)

(4.5.4)

At first it would be not a crime to think of ⟨α|α⟩ and ⟨β|β⟩, it will be simply
13. Because, ⟨β|α⟩ is nothing but a inner product of two states. In case, one is not
exposed to inner product, it is more like general dot product, but with a little twist.

In general, ⟨βi|α j⟩ = δi j, where δ, is a Kronecker delta (distribution), one
would like to see Appendix B, for more. But in general,

δi j =

{
0 if i ̸= j
1 if i=j

(4.5.5)

Let’s back to the braket, so

⟨β|α⟩=
(
β∗

1 β∗
2 β∗

3 . . . β∗
n
)


α1
α2
α3
...

αn

 (4.5.6)

3This tells that both states are not orthogonal states, and overlap between two is maximum.
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So, the inner product space would be,

β
∗
1α1 +β

∗
2α2 +β

∗
3α3 + · · ·+β

∗
nαn = ∑

i
β
∗
i αi (4.5.7)

So, we see that the notation is helpful and conventionally easy for writing out our
models, using such algebra. We will wait for later sections to know more.

4.6 Inner Product

As we discussed that Inner Product is nothing but a different name for conven-
tional Dirac Notation. In this section, we discuss about more general ideas about
inner product and Dirac notations.

Let us get first with bra ⟨β|, we say ⟨β| is a map β : V → C. Mapping is
a general geometry, where certain functions or sets are reproduced with slight
changes using functions.

Then, ⟨β| is generally producing complex vectors, hence it is easy to see that
⟨α|β⟩ ∈ C (only in this case, it may be real also). Now, we must take out time
so avoid a confusion that (φ,ψ) and ⟨φ,ψ⟩ is same as ⟨φ|ψ⟩. So we will see in
various text using either former or latter. We will stick to ⟨,⟩ notation4.

Before we move to lay out some rules for Inner Product, let us lay down some
dot product rules, they are as follows for vector a with components (a1,a2, . . . ,an).

In general we say the dot product is defined as

a ·b = a1b1 +a2b2 + · · ·+anbn (4.6.1)

and for that matter the vectors should abide that,

1. a ·b ̸= a,b for a,b> 1.

4For the respect of Mathematicians.
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2. a ·a ≥ 0, for all vectors a.

3. a ·a = 0, if only a = 0.

4. a ·b = b ·a.

5. a ·α(b) = αa ·b, α ∈ C .

6. a · (b+ c) = a ·b+a · c.

and |a| ≥ 0. For those who don’t know |a|=
√

a1,a2 + · · ·+an.

There is a famous Inequality, called Schwarz Inequality, which thus can be
proven by above axioms, holds

|a ·b| ≤ |a||b| (4.6.2)

proof is easy, and we should attempt it, if we haven’t. Now we say z is vector ∈C

|z|=
n

∑
i

z∗i zi (4.6.3)

that suggests that inner product works in a way it is. Now let us again redirect
ourselves to pure inner product, we take u and v vectors from V , inner product is
a map over F to a number ∈ F . That number is determined by ⟨u,v⟩. Now, the
axioms are same as dot products’.

1. ⟨u,u⟩ ≥ 0, for u ∈ V .

2. ⟨u,u⟩= 0, for u = 0.

3. ⟨u,αv⟩= α⟨u,v⟩, α is a number.

4. ⟨u,v+w⟩= ⟨u,v⟩+ ⟨u,w⟩.

5. ⟨u,v⟩= ⟨v,w⟩∗, reverse implies a conjugate.

The last one is intuitive, and very helpful for our manipulations, whenever needed.
So, it is evident that we need Complex Spaces in order to perform Inner Product,
otherwise it will step down to regular Dot Product.
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Exercise

Perhaps, we would like to do a problem with inner product. So

⟨αu+βv,w⟩ (4.6.4)

from axiom 5, the 4.6.4 will be

⟨w,αu+βv⟩∗ (4.6.5)

because we assume α and β is a number, it can be out of the product from Eq 4.6.4

α
∗ ⟨u,w⟩+β

∗ ⟨v,w⟩ (4.6.6)

now Eq 4.6.5 may written as

(α⟨w,u⟩+β⟨w,v⟩)∗ (4.6.7)

that is
α
∗ ⟨w,u⟩∗+β

∗ ⟨w,v⟩∗ (4.6.8)

this inner product with the help the axiom 5, written as

α
∗ ⟨u,w⟩+β

∗ ⟨v,w⟩ (4.6.9)

which is evidently equal to Eq 4.6.6. Hence we can practically (we mean Mathe-
matically) see that Inner Product works!

* * *

Now there are many Inner Product configurations we see in various problems,
what we just saw was of Cn vector spaces, where n is dimension.

There can be another kind of genuine integral inner product, that is of

V = {set of F(x) ∈ C,x = [0,A]} (4.6.10)

f ,g ∈ V

⟨ f |g⟩=
∫ A

0
f (x)g(x)dx (4.6.11)

this is evident. As we know, how a sign in mathematics changes into other, without
any legal (or illegal) objection.
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4.6.1 Orthogonal

The word orthogonal, can be meant and compared with right angles. But however,
not justified. But 90◦, is an important ingredient in discussing orthogonal. Now,
this orthogonal word is going to help we a lot, during calculations, and would
reduce to the simplest expression, if any. ”Orthogonality” is the term, perhaps
a good and wide term in linear algebra. When simple, u and v vectors ∈ V are
orthogonal, when

⟨u,v⟩= 0 (4.6.12)

that means by orthogonality (i.e because of Eq. (4.6.12)) u and v are perpendicular
to each other.

Figure 4.1: Representation of u and v vectors, orthogonal.

Orthogonal operators are those operators

AT = A−1 (4.6.13)

where T is transpose (studied in next section) and right side is inverse matrix. This
follows that A must leave u and v inner product invariant

⟨Au,Av⟩= ⟨u,v⟩ (4.6.14)

and detA = 1. Product of two orthogonal matrix is orthogonal matrix, and hence
one can form a orthogonal group.
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There is a another term called ”Orthonormal”, not it is distinct. It means that
if u and v are orthonormal, then they are unit vectors (that automatically deduce
the idea of orthogonality)5.

Above discussions, implies also sets, or vector spaces. So, two vector spaces
or sets are orthogonal, if the inner product is 0. And they are orthonormal, if the
set or vector space is orthogonal and every element is unit.

And if we have set of vectors {e1,e2, . . . ,en} and

⟨em,en⟩= δmn (4.6.15)

then the set is orthonormal. As we claimed. And δ is Eq (4.5.5). And the norm
game is also there, for ai ∈ F

|
n

∑
i

aiei|2 = ⟨
n

∑
i

aiei|
n

∑
i

aiei⟩ (4.6.16)

=
n

∑
i
⟨aiai⟩ (4.6.17)

=
n

∑
i
|ai|2 (4.6.18)

this means that vectors from an orthonormal basis/list is linearly independent. For
more on inevitable inner product and linear algebra, Appendix C.

4.7 Linear Maps, Hermitian and Adjoints

We owe to start this section, with Operators. So operators, as we discussed in
Chapter 3, are mapping between function to its value (more rigid, eigenvalues).
They are preferable to be linear in Quantum Mechanics, even in Mathematics.
Then (A+B)Ô = AÔ+BÔ and ÔA = AÔ. Then in that case, these things com-
mute. However, not all operators commute, because of their non-linear property.

5A mathematician see this same orthogonality with perspective of projection. The idea of
Orthogonality is very much indeed original. But whatsoever it may lack the meaning for few
subjects outside the Linear Algebra.
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In case, if the operator is Differential, then one must be better acquainted with
mathematical prospect of the problem, such as Green Functions in inhomogenous
case. And as per our previous discussion, these commutators, may or may not
commute, that depends on their nature.

Linear Maps, yet another Linear, but not last. These maps, in subjects are
widely use for their purpose of connecting vector spaces, as operators connects
domain and range.

A linear map L , has a bracket right to it specifying the map from where to
where, L(U,V ), is a linear map from vector space U to vector space V. Now there
is also a concept called ”Linear Function”, which shares its identity with linear
maps. This linear function T in calculus many times coincides with linear maps,
because of their origin.

For few moments, we must held a job of discussing the abstruse, but somehow
simple Linear Map. A linear map, as we have said is nothing but a transformation
from one space configuration to another space configuration, like L(U,V ). L(U),
what would we call it? It is a linear map from a vector space U to itself. And as
Operators, if we call them linear, they must follow the same rule of linearity. Same
applies to T . One may speak, don’t operators also act like linear functions
and linear maps? Yes, indeed they act like that. A linear operator can be said T
, and vice versa. For example position operator,

x̂v = xv (4.7.1)

so x just mapped v to another v with eigenvalue x. we can also tell we a favourite
of mine, which is somewhat called ”Shift” (if not, then we must call), for this we
need a list or set of numbers

A = {x1,x2, . . . ,xn} : xi ∈ F (4.7.2)

we have now, two new operators cum maps, Left Shift and Right Shift, L and R
respectively. As per their names, it must be clear that they swap the things to left
and right.

LA = L{x1,x2, . . . ,xn}
= {x2,x3 . . . ,xn}

(4.7.3)
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So Left shift, just shifts the set to a left position, that means if we apply the left
shift, the first element get deleted and replaced by the next element. Same goes
for Right shift, but will feel intriguing

RA = R{x1,x2, . . . ,xn}
= {x0,x1,x2, . . . ,xn}

(4.7.4)

we have to add a null space, to preserve the linearity. Zero Vectors and Identity
Vectors (or operators) also acts as linear functions and maps.

One thing to mention that besides L(V ) is a vector space, there will be no
inverse element property and vectors will not be commutative.

Now we must go into a little details of linear function, what they contains
(more precisely, what they spans), or when they said to be injective or surjective
(or invertible). We start with range of T i.e. Range (T )

Range(T ) = {T v;v ∈ V } (4.7.5)

in fact, it is a sub-space of V as per theorems discuss above.

null(T ) = {v ∈ V ;T v = 0} (4.7.6)

This null space is also a subspace of V . Basically, vectors which would get killed
by T falls into the null space. And one can get the dimension of V by

dim V = dim null(T )+dim range(T ) (4.7.7)

this is the beautiful connection, where dim is dimension (we will discuss about
dimensions in spaces). How to know if T is injective or not? It would be injective
under these condition

⇔ if v ̸= w, then T (v−w) ̸= 0 (4.7.8)

⇔ if v ̸= w, then T (v) ̸= T (w)

⇔ if v−w, then T (v−w) ̸= 0

⇔ null (T ) = 0
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and if T is surjective, our range is just the vector space itself. And when dimen-
sion of the T is way less than infinity, they are injective, surjective and invertible6,
all. T also have inverses, basically two, left and right inverse. Left inverse, let
say, Q, QT = we, this inverse is injective and right inverse, Q’, T Q′ = we, this
one is surjective, we is identity.

Is it necessary that all vector spaces (or sub-spaces) get transformed by T ?
No, a vector space or a sub-space, let us say U, then it will be invariant under T
if

T (u) = {T (u);u ∈ U} ⊆ U (4.7.9)

Hermitian Operators are very fruitful in Quantum Mechanics because their
eigenvalues are real, not complex, that just means they represent some physical
system. Hermitian operators have also a complete set of orthonormal eigenfunc-
tions (or eigenvectors). And in fact, they are observable, such as Hamiltonian.
Though, we can have much to say about the Hermitian Operators, which we will
do (but not in the section of Linear Algebra) but for now, our concern is Adjoints.

Hermitian Adjoints of an operator is defined as for operator A by A†. That
means we have complex conjugated the operator and then transposed it (or by
doing the latter first), hence collecting our adjoints.

⟨u,Av⟩ (4.7.10)

The above equation is the inner product, where A is an operator acting on v. It
is simple. One advantage we get by using Adjoints is that we can manipulate the
above equation by using the adjoint acting on the u vector, yet yielding the same
inner product. That means

⟨u,Av⟩= ⟨A†u,v⟩ (4.7.11)

To check that if indeed the dagger (†) on T is a transpose of a conjugate, we
may do a quick calculation. We replace our u and v vectors by a set of orthonormal

6T is invertible if it is surjective and injective, which is said to be 1
T = Q.
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basis ei and e j respectively. And

⟨A†u,v⟩= ⟨u,Av⟩
⟨A†ei,e j⟩= ⟨ei,Ae j⟩

(4.7.12)

by now use of contraction

⟨(A†)miem,e j⟩= ⟨ei,(A)m jem⟩
(A†)∗miδm j = Ak jδim

(A†)∗jiδ j j = Ai jδii

(4.7.13)

we used the delta function here by setting to equals, then reducing the calculation
to

(A†)∗ji = Ai j

A†
ji = A∗

i j
(4.7.14)

there would better and intuitive explanation that this, in fact it is true. And, A† is
linear and we can check it

⟨αu,Av⟩= ⟨A†(αu),v⟩ (4.7.15)

but also

⟨αu,Av⟩=α
∗ ⟨u,Av⟩

=α
∗ ⟨A†u,v⟩

=⟨aA†u,v⟩
(4.7.16)

that means
⟨A†(αu),v⟩= ⟨aA†u,v⟩ (4.7.17)

and this implies that, A+is a linear operator. One thing to notice that (A†)† = A.

Our discussion (though very partial) on Hermitian Operator can be fulfilled by
mentioning that a Hermitian operator is nothing but those operators which satisfy
the Hermicity Condition

A = A† (4.7.18)
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which means operators are self-adjoint. And that is why they play such important
role in Quantum Mechanics. For Hermitian Operator following holds true.

⟨u,Av⟩= ⟨Au,v⟩ (4.7.19)

There is much to be discussed however less the pages we have. However, we can
look for much in the textbooks. But there is one last thing we would like to discuss
that what Ai j (it is simple and illustrating), and few other important features about
this adjoints, remember we called ⟨u,v⟩ is nothing but another way of saying ⟨u|v⟩.

⟨u|Av⟩= ⟨u|A|v⟩
= ⟨v|A|u⟩∗

(4.7.20)

⟨u|v⟩= ⟨v|u⟩∗
⟨u|A†|v⟩= ⟨v|A|u⟩∗ (4.7.21)

and now a good property which we have already discussed, as we have defined u
and v using orthonormal basis

⟨ei|Ae j⟩= ⟨ei|Am jem⟩
= Ai j

(4.7.22)

and again we used the delta function.

4.8 Eigenvector, Eignefunction, and Eigenvalue

The Eigen-Algebra, is the most profound example of application of Linear Alge-
bra in Quantum Mechanics. We will try to discuss in minimal words, the Eigen-
values, Eigenfunction, Eigenstates and Eigenvector. And Eigen means ”Its own”
extracted from German.

We will first jump into the discussion of Eigenvalue Equations. Because max-
imum data is expected to fit into a matrix when we do Physics. It is true in Math-
ematics also. This encoding of values in Matrix, partially explored in Chapter 2,
is very precious for determining the results. A Eigenvalue Equation

A |ψ⟩= λ |ψ⟩ (4.8.1)



4.8. EIGENVECTOR, EIGNEFUNCTION, AND EIGENVALUE 63

λ is said to be the eigenvalue, |ψ⟩ is the object upon which we act the operator
or whatever, and this |ψ⟩ is called Eigenfunction. (In case, it is a vector, it is called
Eigenvector.)

A is the operator or the mathematical (or physical) object which we act upon
the function, on which we want to know the value of that particular operator.
That, however is not true in every sense, but for a beginning we must should adopt
it. It must not be hard, as we have done this kind of things in our Chapter 3
(Schrödinger Equation).

Eq (4.8.1) shows that |ψ⟩ is unchanged. Indeed it is true. So the condition
is that, A must be a linear operator which leaves eigenfunction unchanged, but
however scales it with value of λ. There can not be any good figure than Fig 4.27.

Figure 4.2: Demonstration of Eigenvalue, which in a naive way is scaling the
function or vector.

So, λ is the key to our result. Let us see an example, in Chapter 3, we solved
Schrödinger Equation, in Eq (3.1.3) we say,

H |ψ⟩= E |ψ⟩ (4.8.2)

we now used the ket. If we see our eigenvalue equation, we see that Eq (4.8.2)
is a that kind of equation. H is our Hamiltonian Operator with its corresponding
eigenvalue Energy (E). So Energy is the value of state which we are seeking. And

7First arrow is the mark when |ψ⟩ is not touched but scales when multiplied by a factor of λ.
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we get it after we drag the wave function to be acted by our Hamiltonian. So it is
pretty clear, we will be needing particular operators of kinds to get some particular
eigenvalue.

So, how do we find the eigenvalue? We solve it by looking for Matrix Eigen-
value Equation. As it suggests, it is clear that there is matrix in this game.

We will do an exercise, first a simple and another degenerate exercise (which
has multiple roots). We solve for

Aφ = λφ (4.8.3)

our equation is a homogeneous linear equation. Without doubt it can be said

(A−λ1)φ = 0 (4.8.4)

the solution seems to be φ = 0, but that is not what we want. But matrices tells us
that if det(A−λ1) = 0, then there are non-zero solutions for φ. So for what values
of λ they (determinant) vanish?∣∣∣∣a11 −λ a12

a21 a22 −λ

∣∣∣∣= 0 (4.8.5)

where auv are elements of A. So by Eq (4.8.5 or 4.8.6) we can find the eigenvalues
and eventually eigenfunctions (or eigenvectors). By expanding this determinant
into a algebraic expression (or secular determinant), we get,8

(a11 −λ)(a22 −λ)−a12a21 = 0. (4.8.6)

For simple A, where A is known, for our case,

A =

(
1 1
2 0

)
(4.8.7)

the secular equation now tells us

det(A−λ1) =
∣∣∣∣1−λ 1

2 −λ

∣∣∣∣= λ
2 −λ−2 = 0 (4.8.8)

8This is just for 2 × 2 matrix. Same applies for n × n matrix.
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which easily goes and says, λ1 = 1 and λ2 = -2. Now we have computed the
eigenvalues, we can now compute the eigenvectors as well. To our equation 4.8.4,
we can get the φ. Our φ will be in this case a 2 component matrix. And for two
eigenvalues we will get two components respectively. For λ1

(A−λ1)φ =

(
0 1
2 −1

)(
α

β

)
= 0 (4.8.9)

for this, we know

−α+β = 0
α−β = 0

(4.8.10)

they are linearly dependent equation and that is α = β, so

φ1 = N
(

1
1

)
(4.8.11)

N is the constant, and the adjacent matrix is nothing but from our α = β. For λ2,
we write,

(A−λ1)φ =

(
3 1
2 2

)(
α

β

)
= 0 (4.8.12)

and for this we will have.

3α+β = 0
2α+2β = 0

(4.8.13)

which suggests that β =−α,

φ2 = N
(
−1
1

)
(4.8.14)

and we have computed our eigenvectors! We can check it.

Aφ =

(
1 1
2 0

)
N
(
−1
1

)
=−2N

(
−1
1

)
= λφ (4.8.15)

we can check the other one. So this is a way we find the matrix eigenvalues.
It is a must in Quantum Mechanics. This was a classic example of 2 × 2 matrix.
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For n × n matrix, we will have to just do the same thing, subtracting from traces,
and evaluating the determinant setting equal to zero.

Now, we have a claim. The eigenvalues of Hermitian operators are real. We
can prove it in few lines. For Hermitian operator A,

⟨u,Av⟩= ⟨A†u,v⟩
= ⟨Au,v⟩
= ⟨λu,v⟩
= λ

∗ ⟨u,v⟩

(4.8.16)

but we also have

⟨u,Av⟩= ⟨u,λv⟩
= λ⟨u,v⟩

(4.8.17)

that means
λ
∗ = λ (4.8.18)

hence, our eigenvalue is real. Yet, another thing we can conclude from above cal-
culation. For two different eigenvalues of same Hermitian operator, eigenvectors
are orthogonal. As we have said

⟨u,Av⟩= ⟨u,λ1v⟩
= λ1 ⟨u,v⟩

(4.8.19)

and

⟨u,A⟩= ⟨Au,v⟩
= λ2 ⟨u,v⟩

(4.8.20)

we used label 1 for eigenvalue of v and 2 for eigenvalue for u. Now as we see both
of the results are of the same inner product

λ1 ⟨u,v⟩= λ2 ⟨u,v⟩
λ1 ⟨u,v⟩−λ2 ⟨u,v⟩= 0

λ1 −λ2(⟨u,v⟩) = 0
(4.8.21)

and as per our condition, λ1 ̸= λ2, then the inner product between u and v is zero.

⟨u,v⟩= 0. (4.8.22)
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We can discuss a lot about these Eigen-Algebra, however we must now drop
this, here. Though, we will having regular discussion on this topic in future chap-
ters.

4.9 Unitary Operator

An Unitary Operator9 is that linear operator which preserve the inner product.
This is somewhat identical to identity, but properly applicable in inner products.
Let us get a little back to unitary element. An unitary element is U if it satisfies
this condition

U†U = we (4.9.1)

we is identity operator, and as well as the commutator [U†,U ] must vanish. U† is
adjoint of U . Now this unitary operator which gives us the linear map to nowhere,
but preserves the state, is somewhat in sense trivial. That simply means

⟨Uu,Uv⟩= ⟨u,v⟩ (4.9.2)

u and v are as usual our vectors. It is something, which a field theorist would say
in discrete terms as ”Symmetry”. Unitary operator implies a more general idea of
’Unitarity’. Consider the following time evolution operator10

e−iHt/ℏ (4.9.3)

we can say
⟨φ|e−iHt/ℏ

ψ⟩= ⟨e−iHt/ℏ
φ|ψ⟩ (4.9.4)

where φ is basis vectors meant to evolve backwards in time. Since H is hermitian
and H = H†, using the conjugation, we can also do

⟨φ|e−iHt/ℏ
ψ⟩= ⟨φe−iHt/ℏ|ψ⟩ (4.9.5)

which implies that the time evolution is unitary and H is hermitian. H can only
have real values. When Unitarity is combined with Born rule, it is phrased that
sum of probabilities is always one. Note that if unitary operator (or matrix) is real,

9It is a bounded operator and a surjective one.
10We will discuss it widely later.
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then it is just orthogonal operator (or matrix). And detU = 1. Unitarity also has
a very strong place in quantum field theory and discussions of philosophy related
to it.

We also have an anti-unitary operator defined as

⟨Uu,Uv⟩= ⟨u,v⟩ (4.9.6)

where the horizontal bar represents complex conjugate. From here, we can see
that it is always that

| ⟨Uu,Uv⟩ |= | ⟨u,v⟩ | (4.9.7)

and for every u and v in our Hilbert space. That above equation comes from
Wigner’s Theorem. It categorizes such invariance into unitary and anti-unitary
transformation.

4.10 Hilbert Space

Now, we have successfully landed to our precious discussion of a very pure (and
impure at the same time) space, Hilbert Space (H ). If we discussed infinite
dimensional spaces, and left the Hilbert Spaces, we did a crime11

So, Hilbert Space is a vector space which makes us accessible to define the
angles and distances, they arise as infinite dimensional spaces. It can be quite
confusing that what infinite dimensional means. But first, let us divert our atten-
tion to understand it in quantum mechanics perspective and get ourselves averred
to a mathematical perspective.

A Hilbert Space comes with a complete metric, just like any other vector space
it has inner product, in fact every finite (almost all the basic) vector spaces are
nothing but Hilbert space. Hilbert Space has a feature to treat functions as vectors
in inner product, for which it is famous among physicists and mathematicians. To
be a Hilbert Space, a vector space must be having normalized vectors. So for f (x)
functions12

11The punishment of this crime is however inevitable to all mathematicians (and physicists too),
either they perform the crime or not.

12Which can be treated as vectors here
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∫ b

a
| f (x)2 dx< ∞ (4.10.1)

hence, integrable functions which have property (4.10.1) being normalized are
living in Hilbert Space. From here, we can assert that wave functions live in
Hilbert space. Non-normalized wave functions don’t live in Hilbert Space.

We have one unfinished business, which is diagonalization. Unfortunately, we
do not cover it in book. Diagonalization would be word which we first think when
solving a problem. Reader is referred to a standard book on linear algebra.

4.11 Conclusions from Linear Algebra

This is where we must conclude the Linear Algebra. We experienced how linear
algebra is largely influencing the greater parts of quantum mechanics. Linear
algebra mainly deals with vector space. However, that is not entirely true as one
shall see in studies beyond quantum mechanics. Furthermore, linear algebra take
care of many mathematical grammars of quantum mechanics.

Summary - We studied in section 4.2 that how vector spaces are introduced
in linear algebra. Then, afterward, we took an example of vector spaces that are
frequently seen everywhere. In 4.5, we introduced the Dirac notation (⟨|⟩) in
forms of ⟨a| and |b⟩. In 4.6, we discussed how inner products are relevant in wave
functionality of quantum mechanics. In 4.7, we talk extensively of how linear
maps (which has a more mathematical consequence in field theory) are perfect
example from topological geometry. We also discuss the adjoints and hermitian
operators. Hermitian operators are real eigenvalue bearing operators that, in fact,
act like observables. In section 4.8, which is main part, we discuss the eigen-
physics.
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Part 2
The Quantum Stuffs

and Application to Models
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Chapter 5

Quantum Things

In this chapter, we got to discuss the application of the linear algebras and start
out with practical models. However, to make it mostly intuitive would be my aim.
But quantum is a bit mathematical, and we have to treat it with care-hands.

5.1 Plancherel Theorem

At the beginning of the last chapter, we discussed the Fourier Transformation.
(Speaking of which, Fourier Operators which perform the transformations are
also unitary.) So as we said, momentum space and position space are nothing
but two observables1 to the same problem in different configurations. Parseval
theorem is yet another theorem related to the relation of position and momentum
and connected with our discussion of Unitarity.

Dates back to 1799, a formulated series about Fourier transformation by Marc-
Antoine Parseval, Parseval Theorem is also known as Rayleigh’s Theorem2. But
Parseval Theorem is often seen not as we are doing, hence we say the following
formulated theorem as Plancherel theorem, or Plancherel-Parsvel Identity (and

1Observables in Quantum Mechanics are Hermitian Operators.
2After Lord Rayleigh.
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Parseval Theorem too). As we had stated

ψ(x) =
∫

k−space

1
(
√

2π)3
eik·x

φ(k)d3k

φ(k) =
∫

x−space

1
(
√

2π)3
e−ik·x

ψ(x)d3x
(5.1.1)

in one dimension, we just get the power of constant to one and integrate over dx
and dk3. And we claimed ψ(x) and φ(k) contains the same information. We can
see in Eq (5.1.1) that we can put the values of φ and ψ respectively in the integrals,
and for convenience, we would like to put the dk or dx in the first place and begin
the calculations in only one dimension.

ψ(x) =
1

(
√

2π)

∫
dk eik·x

φ(k)

=
1

2π

∫
dk eik·x

∫
dx′e−ik·x′

ψ(x′)

=
∫

dx′ψ(x′)
1

2π

∫
dk eik·(x−x′)

(5.1.2)

This is not any ordinary integral. It is a special integral of kind∫
dx′ f (x′)δ(x− x′) = f (x) (5.1.3)

and easily noticable the δ(x− x′) in the above equation is

δ(x− x′) =
1

2π

∫
dk eik·(x−x′) (5.1.4)

and record this delta function which we are about to do in the following question.

If the momentum space and position space are connected, their probability
amplitude must be the same. Let us check.

∫
dx |ψ|2 =

∫
dx ψ

∗(x)ψ(x)

=
1

2π

∫
dx

∫
dk φ

∗(k)e−ik·x
∫

dk′ φ(k′)eik′·x

=
∫

dk φ
∗(k)

∫
dk′ φ(k′)

1
2π

∫
dx ei(k′−k)x

(5.1.5)

3We will be dropping the x-space and k-space indication under the integral sign, from here.
And if the limits are not given, believe it from −∞ to ∞.
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You can sparkly recognize the similar delta function, now with k vectors and we
do the integral over k we get φ(k) over the right side.∫

dk φ
∗(k)

∫
dk′ φ(k′)δ(k′− k) =

∫
dk φ

∗(k)
∫

dk φ(k) (5.1.6)

which is, ∫
dk φ

∗(k)φ(k) (5.1.7)

hence ∫
dx′ψ∗(x)ψ(x) =

∫
dk′φ∗(k)φ(k) (5.1.8)

This is the Plancherel Theorem. And hence indicate similarity between two spaces
(or two observables, if talking is done in operators) in Quantum Mechanics. And
it is easy to construct a 3d Plancherel Theorem, which we must take as an exercise.

We can also write the position operator in momentum space by changing the
basis, hence

x → ℏ
i

d
d p

(5.1.9)

how we will mostly restrict ourselves to the momentum space.

5.2 Current Conservation

Current and Current Density is one of the those topics which a physicist must take
care of in Electrodynamics. We write current density as a function of x (point in
space)4

j(x) = ρẋ (5.2.1)

which describes the density of the current at x, and ρ is the probability density.
Here for of course, our probability density is.

ρ(x, t) = ψ
∗(x, t) ψ(x, t). (5.2.2)

4In the equation, we use the the dot at x to define the velocity, as differentiation of position
with time.
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And here we introduce some constant A, such as

A(t) =
∫

ρ(x, t)dx (5.2.3)

and at t = 0, this is what it should be

A(t = 0) = 1. (5.2.4)

Now we ought to check whether,

dA
dt

= 0 (5.2.5)

and to check that, we have,

dA
dt

=
d
dt

∫
ρ(x, t)dx (5.2.6)

following Leibniz rule, we change them to partial derivatives and perform the
multiple rules of differentiation,

dA
dt

=
∫

∂

∂t
ρ(x, t)dx

=
∫

∂

∂t
(ψ∗(x, t) ψ(x, t))dx

=
∫
(

∂

∂t
ψ
∗(x, t))ψ(x, t)+ψ

∗(x, t)(
∂

∂t
ψ(x, t)))dx

(5.2.7)

So we now have to find the derivatives, which in fact we did while doing
normalization, but yet again.

iℏ
∂

∂t
ψ
∗(x, t) = Ĥψ

∗(x, t)

∂

∂t
ψ
∗(x, t) =

i
ℏ
ℏψ

∗(x, t)
(5.2.8)

and similarly for ψ(x, t)
∂

∂t
ψ(x, t) =

−i
ℏ

ψ(x, t) (5.2.9)
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putting it in Eq. 5.2.7 and we get

∂

∂t
A =

∫ i
ℏ
[
(Ĥψ

∗)ψ−ψ
∗(Ĥψ)

]
dx (5.2.10)

so now,
∂

∂t
ρ =

i
ℏ
[
(Ĥψ

∗)ψ−ψ
∗(Ĥψ)

]
(5.2.11)

expanding the Hamiltonian,

∂

∂t
ρ =

i
ℏ

[
−ℏ2

2m
∂2ψ∗

∂x2 ψ+V (x, t)ψ+ψ
∗ ℏ2

2m
∂2ψ

∂x2 −V (x, t)
]

=
−iℏ
2m

(
∂2ψ∗

∂x2 ψ− ∂2ψ∗

∂x2 ψ

)
=

−iℏ
2m

∂

∂x

(
∂ψ∗

∂x
ψ− ∂ψ∗

∂x
ψ

) (5.2.12)

arranging a bit by swapping the sign will let us have.

∂

∂t
ρ =

−∂

∂x

[
ℏ

2im

(
ψ
∗∂ψ

∂x
−ψ

∂ψ∗

∂x

])
(5.2.13)

This things are going to vanish by applying the boundary condition. Now, the
above equation have two terms related i.e conjugate of each others, and for that
we have an identity,

Z −Z∗ = 2i Im(z) (5.2.14)

applying that
∂

∂t
ρ =

−∂

∂x

[
ℏ

2im

(
2i Im

(
ψ
∗∂ψ

∂x

))]
(5.2.15)

and here we have successfully discover the current density which is

J(x, t) =
ℏ

2m
Im
(

ψ
∗∂ψ

∂x

)
(5.2.16)

so, here we get our continuity equation and conservation of current.

∂

∂t
ρ =

−∂

∂x
J(x, t)

∂

∂t
ρ+

∂

∂x
J(x, t) = 0.

(5.2.17)



78 CHAPTER 5. QUANTUM THINGS

5.3 Expectation Values

In section 4.5, we talked about Dirac notation, and here we will be using it for
one mathematical construct. In Quantum Mechanics, we give probability a much
esteem position, and hence we talk mostly about expectations. Like, what is the
momentum in the given state, or perhaps Hamiltonian?

H |ψ⟩ (5.3.1)

Eq. 5.3.1 is the acting of H on wave function5. But what if we insert ⟨ψ| from
left?

⟨ψ|H |ψ⟩ (5.3.2)

This is called the expectation value of H in ψ state. But the general question is
how is it that and why do we need it? It is actually simple, for different values
of H, we will get different probabilities of finding them, so we just multiply the
possibilities of the system with the eigenfunction set we have. It might seem
complicated, but it is simple. It simply means finding the expectation value (in a
more naive way, finding the average) of an operator in the given state.

If we check the expanded form of Eq. (5.3.2), then the summation over the
overall probabilities becomes the integral and hence,

⟨H⟩=
∫

∞

−∞

ψ
∗(x, t) H ψ(x, t) (5.3.3)

or using the hermiticity or adjoint conclusion,

⟨H⟩=
∫

∞

−∞

H ψ
∗(x, t) ψ(x, t). (5.3.4)

There can be a quick exercise to demonstrate that the expectation value of
momentum in momentum space and position space is the same in a given state.

5We don’t need to put a hat on H. And we will ignore the (x,t) as well, but we can keep it in
mind. However, it will be there where it is needed.
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5.4 Evolution of Expectation Values

Now, a quick mathematical question would be what is the value of

d
dt

⟨A⟩ (5.4.1)

this may seem to be an unproductive calculation. However, we should do this,
at least to gain some insights. The question is how the expectation value of A is
dependent on time.

We begin by,

d
dt

⟨A⟩= d
dt

∫
dx ψ

∗(x, t) A ψ(x, t)

=
∫

dx
(

∂

∂t
ψ
∗(x, t) A ψ(x, t) +ψ

∗(x, t) A
∂

∂t
ψ(x, t)

) (5.4.2)

Once again, we will put the value of those differential equations and get the
step further.

d
dt

⟨A⟩=
∫

dx
(

i
ℏ

Hψ
∗(x, t) A ψ(x, t)− i

ℏ
Aψ

∗(x, t)Hψ(x, t)
)

iℏ
d
dt

⟨A⟩=
∫

dx( ψ
∗(x, t) A Hψ(x, t)−ψ

∗(x, t) H A ψ(x, t))
(5.4.3)

Using Hermicity,

iℏ
d
dt

⟨A⟩=
∫

dx( H ψ(x, t) Aψ
∗(x, t)−ψ

∗(x, t) H A ψ(x, t))

=
∫

dx ψ
∗(x, t)[A,H]ψ(x, t)

(5.4.4)

this is nothing but,

iℏ
d
dt

⟨A⟩= ⟨[A,H]⟩ (5.4.5)
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This insightful calculation tells a operator (observable) evolve, and have a deep
connection with a Hamiltonian Operator. Eq. (5.4.5) also known as Ehrenfest
Theorem.

5.5 Uncertainty in Quantum

One thing that is most important and famous is ”Uncertainty”, every organic per-
son may have encountered a term if the person got into science, Uncertainty
Principle. In this section, we would encounter such a thing in a mathematical
manner.

Besides uncertainty in life, what could it possibly mean to have uncertainty?
You may have read about uncertainty, like measuring the distance between some
cosmological object and Earth and finding out that it is x±150 light-years. How-
ever, in quantum mechanics, we have a mathematical yet physical uncertainty.

Uncertainty defined in Quantum Mechanics is sort of insufficient experimental
data and theoretical guesses. This has a concrete theoretical meaning. Let us say
we have a hermitian operator, call it A. In a ψ state, the expectation value of A is

⟨A⟩= ⟨ψ|A|ψ⟩ (5.5.1)

and we define uncertainty of A in ψ (normalized) as

∆A(ψ) = |(A−⟨A⟩1)ψ| (5.5.2)

Here the ∆A is uncertainty and 1 is identity operator. That is how it is defined.
If the uncertainty is zero,

∆A(ψ) = |(A−⟨A⟩1)ψ|= 0 (5.5.3)

that follows

|(A−⟨A⟩1)ψ|= 0
Aψ = ⟨A⟩ψ

(5.5.4)
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if we get that, then ⟨A⟩ is the eigenvalue, means the solution. Without uncertainty,
one can have a fine solution which the expectation value. If we decide or get some
uncertainty is your operators, it become a loss to determinism. We can do some
pretty good algebraic calculation for fun and insights, like the following.

[∆A(ψ)]2 = |(A−⟨A⟩1)ψ|2

= ⟨(A−⟨A⟩1)ψ|(A−⟨A⟩1)ψ⟩
= ⟨ψ|(A2 −A⟨A⟩−⟨A⟩A+ ⟨A⟩2

1|ψ⟩
(5.5.5)

Doing the expectation value, We mean putting the expectation value to the
whole problem, gives6 〈

A2〉−2⟨A⟩2 + ⟨A⟩2 (5.5.6)

which gives our the very first result, the following,

[∆A(ψ)]2 =
〈
A2〉−⟨A⟩2 . (5.5.7)

5.6 Uncertainty Principle

For two hermitian operators, let us say A and B, we define uncertainty for that A
and B as

(∆A(ψ))2 (∆B(ψ))2 ≥
(
⟨ψ| 1

2i
[A,B]|ψ⟩

)2

(5.6.1)

∆A(ψ) ∆B(ψ)≥
∣∣∣∣(⟨ψ| 1

2i
[A,B]|ψ⟩

)∣∣∣∣ (5.6.2)

Where ”|....|“ is the absolute value. We will see how we can derive that equa-
tion. But first, let us check whether the 1

2i [A,B] is hermitian or not. They are if A

6Do it for some time if we still don’t get the result.
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and B are hermitian. To check that, we put the dagger on it7(
1
i
[A,B]

)†

=

(
1
−i

(AB−BA)†
)

=

(
−1

i
((AB)†)− ((BA)†)

) (5.6.3)

What is (AB)†? Let us do a quick calculation.

⟨u|AB|v⟩= ⟨(AB)†u|v⟩ (5.6.4)

We define B |v⟩ → w

⟨u|A|w⟩= ⟨A†u|w⟩
= ⟨A†u|Bv⟩
= ⟨B†A†u|v⟩

(5.6.5)

(AB)† = B†A† (5.6.6)

Putting the value back to our question in Eq (5.6.2). We see

(
−1

i
((AB)†)− ((BA)†)

)
=

(
−1

i
(B†A† −A†B†)

)
(5.6.7)

Using hermiticity, we get

(
−1

i
(B†A† −A†B†)

)
=

(
1
i
[A,B]

)
(5.6.8)

Hence, the commutator is hermitian.
7We can leave out two as it is a real number and have no practical results.
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Let us get back to our discussion of uncertainty. You must have heard about
Heisenberg Principle, relating the uncertainty of two operators, namely position
and momentum. You can use the Eq (5.6.1) to calculate the uncertainty relation.
It is quite easy.

In Eq (5.6.2), we just put the [x, p] which is iℏ,

∆x̂(ψ) p̂(ψ)≥
∣∣∣∣(⟨ψ| 1

2i
iℏ|ψ⟩

)∣∣∣∣
∆x̂(ψ) p̂(ψ)≥ ℏ

2

(5.6.9)

We can easily drag out the constants from the inner product. So this was the
uncertainty between the two operators. There is a wide philosophical meaning
behind it. We will discuss it next.

5.7 A Little Diversion

This section will be a bit of philosophy, or we should rather say we were doing
quantum as physics and now will do as philosophy. But this privilege has been
given to us for only this section.

Uncertainty is one of the famous physics words; as discussed earlier, two op-
erators could have uncertainty if we measure both. There can be uncertainty in
just one operator, just like we have in astrophysics. However, this uncertainty is
not applied to the macroscopic world. You may, however, encounter the calcula-
tions doing astrophysics. Before we proceed, here it is. Quantum mechanics were
of two types. One being the Wave Mechanics by de-Broglie and Schrodinger and
the other one is the Matrix mechanics by Heisenberg.

Werner Heisenberg is credited for his work on the uncertainty principle. In-
deed there is a significant influence of his ideas in this particular principle, as Pauli
has in exclusion principle8.

8Not to mention his destructing powers, which were terrible for many experiments. Indeed a
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Heisenberg, having created matrix mechanics9, now was developing a theory.
After this, we (they) realized that electrons are not easy to understand just by
using simple orbital theories. Then, a lot of studies went into prints to explain
the electron quantum mechanically. So, we see an influence by Heisenberg in
Uncertainty or Quantum Mechanics on the whole.

5.8 Uncertainty Proof

This section will be about the proof of uncertainty equation 5.6.1. The proof is
non-typical and mathematical. We define:

|a⟩= (A−⟨A⟩1) |ψ⟩
|b⟩= (B−⟨B⟩1) |ψ⟩

(5.8.1)

From 5.5.5 we have

⟨A⟩2 = ⟨a|a⟩
⟨B⟩2 = ⟨b|b⟩ .

(5.8.2)

Here we would like to point ourselves to Schwarz Inequality. This inequality
can be found in many corners of physics and mathematics. It, here, can be written
as:

⟨a|a⟩⟨b|b⟩ ≥ |⟨a|b⟩ |2 (5.8.3)

It is easy to see that this Schwarz inequality resembles the closest of 5.6.1.

(∆A)2(∆B)2 ≥ Re(⟨a|b⟩)2 + Img(⟨a|b⟩)2 (5.8.4)

It should not a hard look on the last equation as it resembles the Schwarz Inequal-
ity. As we have,

⟨a|b⟩= ⟨ψ|(A−⟨A⟩)(B−⟨B⟩)|ψ⟩
= ⟨ψ|AB|ψ⟩−⟨A⟩⟨B⟩

(5.8.5)

Super-TheoristMan.
9It was introduced to replace the old quantum theory.
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and

⟨b|a⟩= ⟨ψ|(B−⟨B⟩)(A−⟨A⟩)|ψ⟩
= ⟨ψ|BA|ψ⟩−⟨B⟩⟨A⟩

(5.8.6)

If we calculate the imaginary part in our calculation, then

Img⟨a|b⟩= 1
2i
(⟨a|b⟩−⟨b|a⟩) (5.8.7)

⟨a|b⟩−⟨b|a⟩= ⟨ψ|AB|ψ⟩−⟨ψ|BA|ψ⟩
= ⟨ψ|AB−BA|ψ⟩
= ⟨ψ|[A,B]|ψ⟩

(5.8.8)

Img⟨a|b⟩= 1
2i
⟨ψ|[A,B]|ψ⟩ (5.8.9)

Meanwhile, we can compute the real part of the equation as

Re⟨a|b⟩= 1
2
(⟨a|b⟩+ ⟨b|a⟩)

=
1
2
×2⟨ψ|

{
Ǎ, B̌

}
|ψ⟩

= ⟨ψ|
{

Ǎ, B̌
}
|ψ⟩

(5.8.10)

where
⟨ψ|
{

Ǎ, B̌
}
|ψ⟩= ⟨ψ|(A−⟨A⟩)(B−⟨B⟩)|ψ⟩ (5.8.11)

which is the contracted form of (5.8.5). Our uncertainty equation then becomes,
which is (5.8.4)

(∆A)2(∆B)2 ≥
(
⟨ψ|
{

Ǎ, B̌
}
|ψ⟩
)2

+

(
1
2i
⟨ψ|[A,B]|ψ⟩

)2

(5.8.12)

Eq (5.8.12) is Generalized Uncertainty Principle or Generalized Uncertainty
Equation. But (5.6.2) and (5.8.12) are not the same. In the former one, we see that
the real part is dropped. Indeed, for a regular uncertainty equation, the real part
can be dropped.
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The given reason for the drop is usually stated as the (anti-commutator) part
is not of use. And dropping it off does not affect the inequality. The Anti-
commutator part is often zero (or positive in some states), so we are good to drop
it here to achieve the celebrated uncertainty relation. Therefore, we have

(∆A)2(∆B)2 ≥
(

1
2i
⟨ψ|[A,B]|ψ⟩

)2

(5.8.13)

Eq (5.8.13) can be written as10

(∆A)2(∆B)2 ≥ 1
4
| ⟨[A,B]⟩ |2 (5.8.14)

5.9 Achieving Minimum Uncertainty

In the last section, we derive out equation using the Schwarz Inequality

⟨a|a⟩⟨b|b⟩ ≥ |⟨a|b⟩ |2 (5.9.1)

which, however, comes from a more basic definition of

a ·b = |a||b|cosθ (5.9.2)

This is forR3, where now, a and b are vectors. Squaring on the both sides, we see

(a ·b)2 = (a ·a)(b ·b)cos2
θ ≤ (a ·a)(b ·b) (5.9.3)

the inequality is because of cos2θ. This inequality becomes equality when both
vectors are parallel, so a = α b. Following this we can say that Schwarz Equality

10It would be a good exercise to check it
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can be achieved for ψ for ∆A=α ∆B. This way, we follow what we did in previous
section, we reach at Eq 5.8.12, which however, here is ;

(∆A)2(∆B)2 =
(
⟨ψ|
{

Ǎ, B̌
}
|ψ⟩
)2

+

(
1
2i
⟨ψ|[A,B]|ψ⟩

)2

(5.9.4)

In the last equation, we dropped the real (anti-commutator) part because of the
inequality it was in. Here, we can’t do that. Though, we can set it to zero(

⟨ψ|
{

Ǎ, B̌
}
|ψ⟩
)2

= 0 (5.9.5)

so, the state in which this part is zero will have minimum possible uncertainty that
we are trying to configure. Furthermore,〈{

Ǎ, B̌
}〉

= 0 (5.9.6)

now we will replace out A and B with x̂ and p̂, and since ∆A = α ∆B which sets
out ∆x = α∆p

⟨{x̌, p̌}⟩= ⟨ψ|∆x̌∆p̌+∆p̌∆x̌|ψ⟩
= α⟨ψ|∆x̌2|ψ⟩+ ⟨ψ|∆ p̌∆x̌|ψ⟩

(5.9.7)

From the commutator relation11 [x, p] = iℏ, we have ∆p̌∆x̌ = ∆x̌∆p̌− iℏ, and we
put it to the calculation

α⟨ψ|∆x̌2|ψ⟩+ ⟨ψ|∆x̌∆p̌|ψ⟩− iℏ
= α⟨ψ|∆x̌2|ψ⟩+α⟨ψ|∆x̌2|ψ⟩− iℏ

= 2α⟨ψ|∆x̌2|ψ⟩− iℏ
(5.9.8)

so
2α⟨ψ|∆x̌2|ψ⟩= iℏ (5.9.9)

what can be observed is that α needs to cancel the i, hence it must be complex.
We now define the α = iβ where β ∈R. So

∆p̌ = iβ ∆x̌ (5.9.10)

11[x, p] = [∆x̌,∆ p̌] = iℏ
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If this condition is satisfied, we get the minimum uncertainty because the real
part is now zero, and the relation is

(∆x)2(∆p)2 =

(
1
2i
⟨ψ|[x, p]|ψ⟩

)2

(5.9.11)

Furthermore, Eq (5.9.10) can be written in position space using Fourier trans-
formation and we get

|(p−⟨p⟩1)ψ|= iβ |(x−⟨x⟩1)ψ|(
ℏ
i

∂

∂x
−⟨p⟩

)
ψ = iβ |(x−⟨x⟩1)ψ|

(5.9.12)

Solving the deferential equation, we obtain

ψ =

(
β

ℏπ

) 1
4

e
i⟨p⟩x
ℏ e−

a(x−⟨x⟩)2

2ℏ
(5.9.13)

We achieved the state with minimum uncertainty. This wave packet would
have non-zero expectation values for position and momentum. Since this has
minimum uncertainty, it is an ideal state for stability.

5.10 Energy-Time Uncertainty

Is time observable? It is an open question in physics. Though sometimes time
can be used as an operator, it is never done in quantum mechanics in the sense of
observables. In string theory, we can say that time is an operator by introducing
the proper time. However, it is not fit for us to call it an operator. An operator
called ”time-evolution operator,” but that is a different one that we will study later.

For a wave propagating, we say the total number of wave is represented by

N =
ωT
2π

(5.10.1)
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where ω is frequency and T is time period. Now

∆N ≈ 1 → ∆ωT
2π

= 1

∆ωT = 2π

(5.10.2)

For a photon, energy is described by

E = ℏω

∆E = ℏ∆ω
(5.10.3)

From Eq. (5.10.2), we can do

∆ET = 2πℏ. (5.10.4)

Now we have completed our small setup and introduced two operators; one
is our Hamiltonian and another an arbitrary one which is the function of position
and momentum.

A = Ĥ,B = Z(x̂, p̂) (5.10.5)

where Z does not have direct time dependence. We compute the uncertainty be-
tween these two operators as

(∆H)2(∆Z)2 ≥
(
⟨ψ| 1

2i
[H,Z]|ψ⟩

)2

(5.10.6)

Let’s take a moment aside and ask what is d⟨Z⟩
dt ?

⟨Z⟩ = ⟨ψ|Z|ψ⟩
d
dt

⟨Z⟩ = ⟨ d
dt

ψ|Z|ψ⟩+ ⟨ψ|Z d
dt

ψ⟩ (5.10.7)

from our past calculations about d
dt ψ, we can do

d
dt

⟨Z⟩ =
i
ℏ
⟨ψ|[H,Z]|ψ⟩

=
i
ℏ
⟨[H,Z]⟩ (5.10.8)
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We now see that the result from Eq. (5.10.8) is similar to that of Eq. (5.10.6).
So, a simple instinct tells us that

(∆H)2(∆Z)2 ≥
(

ℏ
2i2

d
dt

⟨Z⟩
)2

(5.10.9)

≥
(
ℏ
2

)2( d
dt

⟨Z⟩
)2

(5.10.10)

and at the end of the day

∆H∆Z ≥ ℏ
2

∣∣∣∣ d
dt

⟨Z⟩
∣∣∣∣ (5.10.11)

We intend to introduce a time configuration where

∆t ≈ ∆Z∣∣ d
dt ⟨Z⟩

∣∣ (5.10.12)

∆Z is the time needed ⟨Z⟩ to change by ∆Z. And, hence we stand near to the
uncertainty between Hamiltonian and a time construct as

∆H∆t ≥ ℏ
2
. (5.10.13)

Moreoever, ∆T is the time which is taken by ψ(x, t) to show orthogonality
with ψ(x,0). Eq. (5.10.13) can be written as

∆E∆t ≥ ℏ
2

(5.10.14)

Note; The uncertainty of energy in an isolated environment and system does
not change and hence is constant.
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Coming back the Eq. (5.10.8), if we substitute at the place of arbitrary operator
Z with our Hamiltonian operator H, which is time independent for now, then we
see

d
dt

⟨H⟩= i
ℏ
⟨ψ|[H,H]|ψ⟩= 0 (5.10.15)

That result is often stated as Energy Conservation. So, there is no change in
overall energy as we go in forward time. We can also see,

d
dt

〈
H2〉= i

ℏ
⟨ψ|
[
H,H2]|ψ⟩= 0 (5.10.16)

There can, however, another good calculation for ∆H

d
dt
(∆H)2 =

d
dt
(
〈
H2〉−⟨H⟩2)

d
dt
(∆H)2 = 0 (5.10.17)

∆H = 0 (5.10.18)

That is a clear argument that energy is always conserved.

We follow a quick quantum exercise to clear out any misunderstanding that
will happen after this chapter. We can see that there are operators which adjust the
wave-functions. There is a similar operator called translation operator.

The translation is the change in coordinates of space. If a wave function at
position x is translated by a, the new position of the wave function is x+a.

Figure 5.1: Translation of wave-function demonstrated.

The translation operator - there is not only one translation operators, there are
many versions of it in quantum mechanics - is

e
ip̂a
ℏ (5.10.19)
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and p̂ is our operator
ℏ
i

∂

∂x
inserting in the Eq. (5.10.19) and inserting left to a wave function which is a
function of position (ψ(x))

e
ip̂a
ℏ ψ(x) = ea ∂

∂x
ψ(x) (5.10.20)

Use use Taylor expansion here, which is

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n (5.10.21)

where n denotes the nth derivative. Expanding Eq. (5.10.20) using Taylor expan-
sion becomes

∞

∑
n=0

1
n!

(
a

∂

∂x

)n

ψ(x)

= ψ(x)+a
dψ(x)

dx
+

1
2

a2 d2ψ(x)
dx2 + .... (5.10.22)

= ψ(x+a)

You will realize that this expansion is the translated wave function to a new posi-
tion, which is x+a. So, the e

ip̂a
ℏ translates any wavefunction by ’a’.



Chapter 6

Angular Momentum and Spin

In this chapter, we ought to discuss angular momentum and spin in quantum me-
chanics. These discussions are essential for modeling the perfect quantum models
and digging deeper into field theory. We will aim to talk in quantum language;
along the way, we will discuss some classical aspects also. This chapter also re-
lates the hyperfine and fine splittings that we see in our hydrogen and other atoms,
which is also a very fine example of atomic physics.

6.1 Angular Momentum and Spherical Coordinates

Three-Dimensions

So far, we have been doing the two-dimensional cases and have been defining
every operator for only two-dimension (one spatial+one time). However, we can
define the quantum mechanics in three-dimensional also. Just there, we have to
change the dimensions and smoothness related to it. The position operator for
three dimensions (where all three are spatial) is

Q̂(x,y,z) = Q(x,y,z). (6.1.1)

93
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Same we can define the momentum operator1 as

−→p =−iℏ
−→
∇ (6.1.2)

where
−→
∇ is gradient which is written as

∇ =
d
dx

+
d
dy

+
d
dz

(6.1.3)

and x,y,z are our dimensions. Since, px is one of the component of −→p , we can
write that with Qx = x

px =−iℏ
d
dx
,→ [x, px] = iℏ. (6.1.4)

however, different components of position must commute

[x,y] = 0 (6.1.5)

hence, momentum should also commute

[px, py] = 0 (6.1.6)

We can write the time-independent wavefunction in terms of three-dimensional
representation as

Eψ(
−→
Q ) =

−ℏ2

2m
∇

2
ψ(

−→
Q )+V (

−→
Q )ψ(

−→
Q ) (6.1.7)

where
−→
Q is our position. Three-dimensional quantum mechanics is indeed fas-

cinating and a lot more about geometry and spaces. However, we won’t be dis-
cussing it more, other than the discussed part of it in succeeding chapters, because
it is not relevant to most of our discussions.

Angular Momentum Algebra

We classically define the angular momentum (L) as

L =−→r × p̂ (6.1.8)
1We need to drop the hat because it will trouble us to write the vector arrow.
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p̂ is momentum. In quantum mechanics, it is reasonable to see L as an operator
so, L̂. Since we are doing 3D, the total angular momentum will be

L̂ = L̂x + L̂y + L̂z (6.1.9)

Figure 6.1: Angular momentum in terms of components along the circle.

where we can see the matrix is

L̂ =

∣∣∣∣∣∣
î ĵ k̂
x y z
Lx Ly Lz

∣∣∣∣∣∣ (6.1.10)

from here one can easily see that

L̂ = L̂x + L̂y + L̂z = (pz − zpy)+(zpx − xpz)+(xpy − ypx) (6.1.11)

and

L̂x = (yp̂z − zp̂y) (6.1.12)

L̂y = (zp̂x − xp̂z) (6.1.13)

L̂z = (xp̂y − yp̂x) (6.1.14)
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furthermore,

L̂x =

(
y
ℏ
i

d
dz

− z
ℏ
i

d
dy

)
(6.1.15)

L̂y =

(
z
ℏ
i

d
dx

− x
ℏ
i

d
dz

)
(6.1.16)

L̂z =

(
x
ℏ
i

d
dy

− y
ℏ
i

d
dx

)
(6.1.17)

in momentum space (5.1),

L̂x =

(
ℏ
i

d
d py

p̂z −
ℏ
i

d
d pz

p̂y

)
(6.1.18)

L̂y =

(
ℏ
i

d
d pz

p̂x −
ℏ
i

d
d px

p̂z

)
(6.1.19)

L̂z =

(
ℏ
i

d
d px

p̂y −
ℏ
i

d
d py

p̂x

)
(6.1.20)

It is obvious to observe that L̂x, L̂y, L̂z are invariant under adjoint operation, hence
they are hermitian. Since they are hermitian, they are also observables.

L̂†
z = (xp̂y − yp̂x)

† = p̂†
yx† − p̂†

xy† = xp̂y − yp̂x (6.1.21)

It will be an interesting thing to commute the two Li, where i = x,y,z. In that
case, the commutator is[

L̂x, L̂z
]

= [yp̂z − zp̂y,xp̂y − yp̂x]

= −[yp̂z,xp̂y]+ [zp̂y,yp̂x] (6.1.22)

It was done by commutator identity. Now, we can do

= −(p̂z[y, p̂y]x)+(z[p̂y,y]p̂x) (6.1.23)
= iℏzp̂x − iℏp̂zx (6.1.24)
= iℏ(zp̂x − p̂zx) (6.1.25)
= iℏL̂y (6.1.26)

[
L̂x, L̂z

]
= iℏL̂y (6.1.27)
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Likewise, we can do the other commutator algebras[
L̂x, L̂y

]
= iℏL̂z (6.1.28)[

L̂y, L̂z
]
= iℏL̂x (6.1.29)[

L̂x, L̂z
]
=−iℏL̂y (6.1.30)

It can be easily calculated that the angular components i.e Li do not commute
in a position space, we answer it straightforward

[Lx,Ly]x =−ℏ2y ̸= 0 (6.1.31)

and it would be interesting to calculate the inner product between Li, that we leave
to the reader, i.e.,

⟨Li|L j⟩ ; i ̸= j. (6.1.32)

When it comes to choose the basis among Li - since any Li can be written is
form of other we can identity a basis and write angular momentum in that basis -
we have to first identify the matrix relation between them. A simple analysis by
checking the commutator relations gives us2

Lx =
1√
2

0 1 0
1 0 1
0 1 0

ℏ (6.1.33)

Ly =
1√
2

0 −i 0
i 0 −i
0 i 0

ℏ (6.1.34)

Lz =

1 0 0
0 0 0
0 0 −1

ℏ (6.1.35)

they all satisfy (6.1.28 - 6.1.30). These 3× 3 matrices are hermitian and can be
checked. Among the matrices, the one which can be chosen as the basis is that the
diagonal matrices, as they are good for eigenvalue picking. Fashionably, (6.1.35)
is diagonal and can be chosen as the basis. Once, we pick LZ as basis in the

2This is the same analysis that we did in finding the Mach-Zehnder Interferometer’s beam
splitters matrices, which at the point can also be seen as operators.
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representation theory of angular momentum, we can calculate the other Li in the
basis of Lz using (6.1.12 - 6.1.14) as they are non-commutating objects. However,
one can surely pick the Lx or Ly as the basis, but the relations (6.1.28 - 6.1.30)
would be different in that basis and mathematics would be the same.

We solve the [Lx,Ly] = iℏLz using the matrix operator

[Lx,Ly] =
1√
2

 0 1 0
1 0 1
0 1 0

ℏ
1√
2

 0 −i 0
i 0 −i
0 i 0

ℏ− 1√
2

 0 −i 0
i 0 −i
0 i 0


×ℏ

1√
2

 0 1 0
1 0 1
0 1 0

ℏ

=
ℏ2

2

 i 0 −i
0 −i+ i 0
i 0 −i

− ℏ2

2

 −i 0 −i
0 i− i 0
i 0 i


=

ℏ2

2

 i+ i 0 −i+ i
0 0 0

i− i 0 −i− i


=

ℏ2

2

 2i 0 0
0 0 0
0 0 −2i

= iℏ

 1 0 0
0 0 0
0 0 −1

ℏ

[Lx,Ly] = iℏLz (6.1.36)

more generally it is written as

[Li,L j] = iℏεi jkLk (6.1.37)

where i, j,k are different space component. Furthermore, in the matrix notation



6.1. ANGULAR MOMENTUM AND SPHERICAL COORDINATES 99

the total angular momentum L can be written as

L =



1√
2

0 1 0
1 0 1
0 1 0

ℏ

1√
2

0 −i 0
i 0 −i
0 i 0

ℏ1 0 0
0 0 0
0 0 −1

ℏ


(6.1.38)

It can be asked now that what is L2?

Fairly simple to calculate using Dirac notations. If we keep |L⟩ as L and
product it with ⟨L|, then

⟨L|L⟩= L2 (6.1.39)

we do the calculation, and readers are advised to do this, we get

L2 = 2ℏ2 (6.1.40)

and in matrix notation
L2 = 2ℏ21 (6.1.41)

where 1 is the identity matrix (3×3)

1=

1 0 0
0 1 0
0 0 1

 (6.1.42)

Furthermore, we can write the eigenvalues of momentum operators as follow-
ing

Lx |φ⟩= λx |φ⟩ (6.1.43)
Ly |φ⟩= λy |φ⟩ (6.1.44)
Lz |φ⟩= λz |φ⟩ (6.1.45)
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and we can not have simultaneous eigenstates for two (or by means all three) of
them. We can check that using commutation;

[Lx,Lz] |φ⟩=−iℏLy |φ⟩=−iℏλy |φ⟩ (6.1.46)
(6.1.47)

opening the commutator

(LxLz −LzLx) |φ⟩= (λxλz −λzλx) |φ⟩ (6.1.48)
λxλz = λzλx (6.1.49)

(6.1.50)

[Lx,Lz] |φ⟩= 0 (6.1.51)
−iℏλy |φ⟩= 0 (6.1.52)

and that gives us

λz = 0 (6.1.53)
|φ⟩= 0 (6.1.54)

moreover,

λx = 0, λy = 0 (6.1.55)

λx = λy = λz = 0, |φ⟩= 0 (6.1.56)

that is how all three of them cannot have simultaneous eigenstates.

Because we are randomly picking subjects and discussion them in this chapter,
we want to know now what is the commutator

[Lx,L2] ? (6.1.57)

In (6.1.41), we say L2 = 2ℏ. In spite of that, we can write L2 also as the
following form

L2 = LxLy +LyLy +LzLz (6.1.58)
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a straightforward answer (yet surprising) to (6.1.57) can be now written as

[Lx,L2] = [Lx,LxLy +LyLy +LzLz]

= [Lx,Ly]Ly +Ly[Lx,Ly]+ [Lx,Lz]Lz +Lz[Lx,Lz]

= iℏLzLy + iℏLyLz − iℏLyLz − iℏLzLy

= 0 (6.1.59)

similarly
[Ly,L2] = 0 (6.1.60)

[Lz,L2] = 0 (6.1.61)

so, Li commutes with L2 in a less but fancy way, which is expected. An im-
portant thing to note is that we can find simultaneous eigenstates for commuting
operators:[Li,L2] can have non-vanishing simultaneous eigenstates.

Central Potential and Polar QM

Our freshly three-dimensional quantum mechanics has a very speculating problem
called ’Central Potential Problem.’ In 3D, we have potential in terms of distance
from the origin, which hints at what central potential can mean. It looks something
like this, V (

−→
Q ) =V (−→r ). One classic example can be found in electromagnetism

known as ’Coulomb Potential’;

V (−→r ) =− Ze2

4πε0r
. (6.1.62)

For a stationary state - of which we will discuss in later chapter, however they
are time-independent states, means they have observables which don’t depend on
time - we can write the Schrodinger Equation as(

−ℏ2

2mψ

∇
2 +V (−→r )

)
ψ(−→r ) = Hψ(−→r ) (6.1.63)

where mψ is the mass. We can write the ∇2 as spherical coordinates (r,θ,φ) as

∇
2 =

1
r2

∂

∂r

(
r2 ∂

∂r

)
︸ ︷︷ ︸

radial compoent

+
1

r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2 sin2

θ

∂2

∂φ2︸ ︷︷ ︸
angular component

(6.1.64)
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the notations can be summarized as

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

r =
√

x2 + y2 + z2

θ = cos−1
(z

r

)
φ = tan−1

(
y
z

)

Furthermore, using chain rules

∂

∂φ
=

∂y
∂φ

∂

∂y
+

∂z
∂φ

∂

∂z
+

∂x
∂φ

∂

∂x
(6.1.65)

∂

∂φ
= x

∂

∂y
+0− y

∂

∂x
(6.1.66)

∂

∂φ
= x

∂

∂y
− y

∂

∂x
(6.1.67)

using 6.1.17, we can immediately write

Lz =
ℏ
i

∂

∂φ
(6.1.68)

that is how we can write angular momentum in terms of polar coordinates.

General Discussion on Angular Momentum

We write the angular momentum magnitude squared as3

L2 =−ℏ2
(

1
sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
sin2θ

∂2

∂φ2

)
(6.1.69)

3Can be checked using various methods, one include writing explicitly the L2 in polar coordi-
nates.
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with eigenvalue written as
ℏ2

λ, λ> 0 (6.1.70)

As we said, the Li and L2 commute, most of the time we would be wanting to
calculate L2. An eigenvalue equation would be

L2
ψl,m = ℏ2

λψl,m (6.1.71)

Lzψl,m = ℏl(l +1)ψl,m (6.1.72)

and for Lz it is
Lzψl,m = ℏmψl,m (6.1.73)

it can be also written as it is clear that solutions to angular momentum is in multi-
ples of ℏ, which is fascinating for now. Where m follows −l ≤ m ≤ l, and m ∈ C.
Now, we would like to know what is ψl,m, we can deduce it from (6.1.73) and
solve the differential equation by the following way

ℏ
i

∂

∂φ
ψl,m = ℏm ψl,m (6.1.74)

∂

∂φ
ψl,m = im ψl,m (6.1.75)

solving this PDE (partial differential equation) gives us

ψ(φ) = eimφC (6.1.76)

where C is a tensor function of θ (later would be called Legendre polynomials)
We impose one boundary condition

ψl,m(θ,φ) = ψl,m(θ,φ+2π). (6.1.77)

Eq (6.1.76) is exponential, and somewhat similar to our matter wave solution.
It is a very convenient wave function for writing solutions to PDE and ODE of
Schrödinger equations.

We can also extract ψl,m by using (6.1.72). We will calculate it using the
(6.1.69).

L2
ψl,m =−ℏ2

(
1

sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
sin2θ

∂2

∂φ2

)
ψl,m

= ℏ2l(l +1)ψl,m (6.1.78)
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solving (6.1.78) is easy if we multiply both sides with −sin2θ. Canceling the ℏ2

and taking the derivative that has been solved in this section gives us the equation

sinθ
∂

∂θ

(
sinθ

dC
dθ

)
+
(
l +(l +1)sin2

θ−m2)C = 0 (6.1.79)

∂2(i2m2)

∂φ2 =−m2 (6.1.80)

Using (6.1.79) and solving it we can get

Cl = ∑
k

akxk (6.1.81)

if we can’t tell already,Cl are Legendre polynomials. What are the coefficients ak?
These have an identity

ak+2

ak
=− [l(l +1)− k(k+1)]

(k+1)(k+2)
(6.1.82)

however, it must vanish for l = k. From the overall calculation, one can deduce
the famous result

− l ≤ m ≤ l (6.1.83)

and m can’t exceed the number of solutions than 2l +1.

More generally Legendre polynomials have the differential form

d
dx

[(
1− x2) dPn(x)

dx

]
+n(n+1)Pn(x) = 0 (6.1.84)

and eigenvalue equation

d
dx

((
1− x2) d

dx

)
P(x) =−λP(x) (6.1.85)

where P(x) are Legendre polynomials.
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6.2 Spins and Stern-Gerlach Experiment

Now we turn to an important discussion, however short, of spins and magnetic
momenta. Algebra for spins are similar to angular momentum algebra which was
introduced in Sec. 6.1.

Magnetic momentum (µ) is written as

µ = rA (6.2.1)

where r is direction and A is area of the charge, for charged rotating particle, see
Figure 6.2.

r

Figure 6.2: Rotating charge in direction r.

There is also a formulae
µ =

1
2

θvR (6.2.2)

and we have
L = P ·R = mvR (6.2.3)

µ =
1

2m
θmvR (6.2.4)

=
θ

2m
L (6.2.5)
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µ =
θL
2m

, Relationship between angular momentum and magnetic moment,
(6.2.6)

in all these, R is radius. But these are classical equations. If we quantize a reg-
ular field we get ℏ and various other factors. Generally speaking, for electron in
quantized way

µ = g
eℏS

2meℏ
, (6.2.7)

where g is Lande factor, me is mass of electron and S is spin. Before we discuss
more, we ought to discuss the spins.

Spins are intrinsic properties of rotating particles. It has its immense impor-
tance in quantum theories. When we talk about rotating particles, we don’t mean
only its angular component and linear components. In classical theories, it may be
sufficient. But in quantum theories, we have to include spins in talks of rotating
(and sometimes non-rotating) particles. Spins never means rotating. The defini-
tion of spins are a little referred to a quantum property without a pure meaning.

Algebra for spins are similar to angular momentum algebra, discussed in Sec.
6.1. In 3D, spins have component (Sx,Sy,Sz). We see that Si are similar to Li,
of course they have differences in algebraic structures and operations. Like for
Li,L j and Lk we have following

[Li,L j] = iℏεi jkLk, (6.2.8)

where ε is showing permutation. Algebras related to this are 6.1.28-6.1.30. Simi-
larly, one can write the spins algebra as

[Si,S j] = iℏεi jkSk, (6.2.9)

[Sx,Sy] = iℏSz (6.2.10)
[Sy,Sz] = iℏSx (6.2.11)
[Sx,Sz] =−iℏSy (6.2.12)

Important thing to note that while Li acts on functions, for that matter wave
functions, Si acts on vectors. There will be no simultaneous eigenstates in this
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case either for Si and S j (i ̸= j). But there exist simultaneous eigenstates for S2

and Si. We can explicitly write these spin operators as

Ŝi =
ℏ
2

σi, (6.2.13)

where σi are Pauli matrices. These are 2× 2 (square) matrices for values of “i”.
And these are

σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)
.

(6.2.14)

and4

Trσi = 0 (6.2.15)

So,

Sx =
ℏ
2

(
0 1
1 0

)
(6.2.16)

Sy =
ℏ
2

(
0 −i
i 0

)
(6.2.17)

Sz =
ℏ
2

(
1 0
0 −1

)
(6.2.18)

and all Si are hermitian. So, they are observables. We can also derive the com-
mutation relations for spin operators using the matrices that we discussed now. It
should be now a time to check for eigenvalues for Si. Before we check that, we
want to construct some states as Si has two possible eigenvalues (with basically
±). Let us take φ as our wave function, with two possible spins ±s, we will say
what this s is.

|φ;±⟩ (6.2.19)

and
Si |φ;±⟩= si |φ;±⟩ (6.2.20)

4Tr is trace, means the sum of diagonal components.
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where si is eigenvalue. If we apply the matrix operator of Sz with some random
|φ;±⟩, we will find that

Sz |φ;±⟩=±ℏ
2
|φ;±⟩ , (6.2.21)

here to note that angular momentum had explicitly ℏ in the eigenvalue (that is
what makes it “quantum”) and here in spins, we have ℏ/2. And in some sense
± is indicating the helicity of the spin. (In general, we can say a spin is up or
down.) We can still discuss a lot about spins themselves, but we ought to study
Stern-Gerlach Experiment, which is a theory around this topic. So spins can have
two values ℏ/2 and −ℏ/2 and for brevity, let us write that φ+ represents a state
with spin “+” and φ− represents a state with spin “-”.

A Stern-Gerlach machine will take φ and produce either φ+, or φ−. In this
way, we have a efficient way to measure the spin of a system (or for that matter,
wave function). Consider the following figure;

Figure 6.3: A Stern-Gerlach machine, where we put φ+− and get either spin up or
spin down. One of these will be blocked in the machine and only one will ray out.

and we mention a very important property

⟨φ+|φ−⟩= 0, (6.2.22)

and that means, they are orthogonal. And

⟨φ+|φ+⟩= 1. (6.2.23)

When applying the operators, we have

Szφ+ =
ℏ
2

φ+ (6.2.24)

Szφ− =−ℏ
2

φ− (6.2.25)
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It should be noted that eigenvalues of spin angular momentum are all either
integral or half-integral. While angular momentum eigenvalues are only integral.
So, for the case of spin angular momentum the possibilities are more general than
orbital angular momentum.

We make now some general remarks about spins. Angular momentum (or-
bital) is well defined because its connection with the rotation operator (which
causes the rotation around an origin). But spins lack physical meaning in many
sense. We will try to some extent to define it. Consider a spin 0 particle, now it is a
special case. Because in this case all the m are vanishes. For simplicity, J = L+S
and if spins is zero then J = L. This result is telling us that rotating a particle does
not change the particle’s orientation, we call those particles (with spin zero) as
“spherically symmetric”. Indeed a sphere from any orientation is same looking.
This is not the case with s = 1/2,1. Only observed fermions in nature is of spins
1/2, so orientation for them causes different looks.

Figure 6.4: Consider this ball, the spin is showing its helicity (we can ignore it), if
the arrow of the ball is 0, we can rotate this ball around the axis and the ball will
be same. However, if the case is that of spin 1/2, then ball will be upside down.

However, we gather that a macroscopic object with no angular momentum is
non-symmetric, but if it cool down so the quanta become non-associated with the
state, the state will have to become “spherically symmetric” It may contradict the
result we discussed above but it is a classical result.

For s = 1/2 we have already introduced the spinor formalism where

S2 |ζ⟩= 1
4
ℏ2 |ζ⟩ (6.2.26)
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S |ζ⟩= ℏ
2

σi (6.2.27)

where |ζ⟩ is some arbitrary state. Spinor formalism has been discussed in above
discussions. As we said, this s = 1/2 will change the sign on one rotation and it
can be observed easily with a phase space state.

6.3 Quantum Effects in Orbitals

Generally, atoms experience four kinds of quantum effects in their orbitals. They
are

1. Bohr Energy → α2mec2

2. Hyperfine Splitting → α4mec2
(

me
mp

)
3. Spin-Orbit Coupling → α4mec2

4. Lamb Shift → α5mec2

where me,mp are mass of electron and proton respectively. We would not discuss
them here as it might divert us from the objective of this book.



Chapter 7

Pictures and Harmonic Oscillator

This is a two-fold chapter. First we discuss the Schrödinger picture and Heisen-
berg picture. Then we turn to what is quantum mechanics generally for, study of
oscillators and study of models. In what follows, model means a configuration
for wave-functions. There are many models to study about which includes very
interesting scenario called “Harmonic Oscillator”. It is interesting because it is
not only confined to quantum mechanics, but has its root in quantum field theory,
classical field theory, statistical physics, string theory and many more.

7.1 Heisenberg Picture

Discussed in section 4.9, a unitary operator is

U†U = 1, (7.1.1)

and we showed that time-evolution operator is a unitary operator. In doing so, we
need to make our operators to be time-dependent in what follows. A Schrödinger
picture is a simple mechanism of quantum mechanics which incorporate the time-
dependency of states, but not necessarily of operators. Operators become constant
there.

111
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Heisenberg introduced another formulation for quantum mechanics. In which,
we take operators to be time-dependent while states are constant (fixed).

Pictures States Operators
Schrödinger Scheme Moving Fixed
Heisenberg Scheme Fixed Moving

Table 7.1: A table of both schemes and their representations for ket states and
observables.

When we speak of operators, we are speaking of dynamical observables. And
we speak of states, we mean ket states like |ψ⟩. In table 7.1, we mention the dis-
tinction between the both pictures. Writing the Heisenberg formulation is mainly
done in matrix elements, that we have discussed in past chapters. Heisenberg idea
and Schrödinger idea is connected in some sense that we will see in some time.

Introduced in 4.9, time evolution operator, which is unitary, given by

µ(t) = e−iHSt/ℏ, (7.1.2)

where t represents time. Take any dynamical operator Â which can be Schrödinger
operator if ÂS and Heisenberg operator if ÂH . As per definition, ÂS operators are
timely-fixed and ÂH operators are otherwise moving. We can relate both using
the unitary operator

ÂH(t) = µ†(t,0) ÂS µ(t,0), (7.1.3)

such that ÂH(t = 0) = ÂS, where in (7.1.3) we can define µ(t,0) in such a way
that

ψ(t = τ) = µ(t = τ,0) ψ(0), (7.1.4)

which take the wave function from t = 0 to t = t which we have already seen in
Schrödinger picture. However, in Heisenberg picture states are fixed. It is clear
that, for instance Ĥ

ĤH(t) = µ†(t,0) ĤS µ(t,0). (7.1.5)

Before we move on, it should be cleared that

[AH ,BH ] =CH (7.1.6)
[AS,BS] =CS, (7.1.7)
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hence commutators in either representation are same.

Both the schemes are mathematically equivalent. However, they were devel-
oped for the case where we have control over states and dynamic operators. It
is clear that Schrödinger picture is welly developed in differential mathematics.
It is same with Heisenberg picture, we have differential equation for Heisenberg
operators1

iℏ
d
dt

ÂH = iℏ
(

∂

∂t
µ†ÂSµ+µ†Âs

∂

∂t
µ+µ† ∂

∂t
ÂSµ

)
, (7.1.8)

where from (7.1.2)
∂

∂t
µ= HSµ, (7.1.9)

and
∂

∂
µ† =−HSµ

†, (7.1.10)

after this, (7.1.8) becomes

iℏ
d
dt

ÂH =−HSµ
†ÂSµ+µ†ÂsHSµ+µ†iℏ

∂

∂t
ÂSµ. (7.1.11)

and reduces to

iℏ
d
dt

ÂH = [ÂH ,HH ]+ iℏ
∂ÂH

∂t
. (7.1.12)

One interesting development one see from Heisenberg scheme is its connec-
tion with classical mechanics. It is one of the ways from which one first get to
know about “Poisson Brackets”. Which are defined as

{a,b}P.B = ∑
r

(
∂a
∂qr

∂b
∂pr

− ∂a
∂pr

∂b
∂qr

)
, (7.1.13)

where pr and qr are two canonical variables. (When one goes from classical
theory, one also go from Possion brackets to commutator relations. The former is
of great importance in classical mechanics and the latter in quantum mechanics.)
We can related the Poisson bracket and commutator

iℏ{a,b}P.B = [a,b] . (7.1.14)

From which, one immediately realizes

{x, p}P.B = 1. (7.1.15)
1For brevity, we ignore the brackets of variables.
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7.2 Energy Levels

Now we change our topic to discuss the energy levels of a system. Consider a
System S, for which we have Hamiltonian Hn with eigenvalue En where, let say,
n ≥ 0. If n = 0, we say E0 is ground state energy. The reason it is ground state
that it gives lowest possible energy for the system. Reader can sense that we are
talking about states of the system. When n> 0, we will call it excited states.

n=0

n=1
n=2

n=3

Figure 7.1: A system has energy levels, the ground state is lowest energy and other
states are n> 0 “excited states”.

In some cases, vacuum state is ground state. If more than one ground state
is found in a system, we call it degenerate system. And so we say that a system
oscillates between these energy levels. “Oscillations” are the words that are very
important in quantum mechanics as well as quantum field theory. We will treat
oscillations as something to do with energy levels which would create the excita-
tions (or otherwise) in any quantum system. Of course, this needs some operators
and we call them “ladder operators”. One can denote them an and a†

n. The former
is “lowering operator” and the latter is “raising operator”. One have, for a system
in nth state

an |ψn⟩= |ψn−1⟩ (7.2.1)

a†
n |ψn⟩= |ψn+1⟩ . (7.2.2)

We also have a number N such that

N = a†
nan, (7.2.3)
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and commutators [
an,a†

n

]
= 1, (7.2.4)[

N,a†
n

]
= a†

n, (7.2.5)

[N,an] =−an. (7.2.6)

7.3 A Basic Harmonic Oscillator

In quantum mechanics, we study models. Models of different kind and situations,
each preserving the basic quantum laws. One of them is Harmonic Oscillator.
In any basic book, one see that harmonic oscillators (or more simply simple har-
monic oscillators (S.H.M)) are oscillating system. Most basic can be a moving
spring or whatever.

The energy for a classical harmonic oscillator is given by

E =
p2

2m
+

mω2x2

2
, (7.3.1)

but for the harmonic oscillator as quantum system, we write the Hamiltonian

H =
p̂2

2m
+

mω2x̂2

2
. (7.3.2)

The next thing to consider in any system is the question; “What are the eigen-
functions for these operators?” So we search for wave functions of these kinds of
systems. In this case of harmonic oscillators, our wave function should resemble
the properties under underlying operations of harmonic oscillators. First, we need
to identify what are the ladder operators for such harmonic system. One can find
that, they are2

a =

√
mω

2ℏ

(
x̂+

i
mω

p̂
)

a† =

√
mω

2ℏ

(
x̂− i

mω
p̂
) (7.3.3)

2a and a† are not hermitian as their adjoints are equal.
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It turns out that wave function for Harmonic oscillators are

ψn(x) =
1√
2nn!

·
(mω

πℏ

)1/4
· e−

mωx2
2ℏ ·An

(√
mω

ℏ
x
)
, n = 0,1,2, . . . , (7.3.4)

where An are Hermite polynomials

An(z) = (−1)nez2 dn

dzn

(
e−z2

)
. (7.3.5)

We mention here few Hermite Polynomials results

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 −2

H3(x) = 8x3 −12x

H4(x) = 16x4 −48x2 +12

H5(x) = 32x5 −160x3 +120x

H6(x) = 64x6 −480x4 +720x2 −120

H7(x) = 128x7 −1344x5 +3360x3 −1680x

H8(x) = 256x8 −3584x6 +13440x4 −13440x2 +1680

H9(x) = 512x9 −9216x7 +48384x5 −80640x3 +30240x

H10(x) = 1024x10 −23040x8 +161280x6 −403200x4 +302400x2 −30240

H11(x) = 2048x11 −56320x9 +506880x7 −1774080x5 +2217600x3 −665280x.
(7.3.6)

The energy eigenvalues are given by

En = ℏω

(
n+

1
2

)
, (7.3.7)

and ground state energy is given by a peculiar observation that it is ℏω/2 more
than Zero-Point Energy. And this property contradicts what we see in classical
oscillators where it is zero. Also that position and momentum are not fixed in
ground state, however, uncertainty principle does not let that happen. Wave func-
tion for the ground state is centered at origin, see 7.2. Other things to note for the
energies of these kinds of oscillators are that every energy level is equally spaced
and are properly quantized (ℏ factors).
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ψ0(x)

ψ1(x)

ψ2(x)

Figure 7.2: Wave functions for harmonic oscillator, where n is representing state.

The ground state wavefunction is given by setting n = 0 in (7.3.4), which in
1D is given by the first-order differential equation(

x+
ℏ

mω

d
dx

)
ψ0 = 0, (7.3.8)

which results in

ψ0(x) = C
(mω

πℏ

) 1
4

e−mωx2/2ℏ. (7.3.9)

Before discussing the application of such system, it is interesting to note that
dynamical variables like x and p can also be written in terms of ladder operators.
They can be written in harmonic oscillators as

x̂ =

√
ℏ

2mω

(
a† +a

)
,

p̂ = i

√
ℏmω

2

(
a† −a

)
.

(7.3.10)

The applications of these oscillators and operators are not limited to quantum
mechanics, in fact, every other physics beyond quantum mechanics nowadays
need these oscillating machine in the theory.



118 CHAPTER 7. PICTURES AND HARMONIC OSCILLATOR

Most interesting example is Quantum Field Theory. In quantum field the-
ory, we discuss about various types of quantization involved which quantizes a
classical field. Two important quantization process is canonical quantization and
path-integral formulation. Both uses the oscillator technique, however, the former
exploit it extensively. We do not have the scope (in this book) to discuss either,
however we can talk it very briefly.

To establish a canonical quantization of ϕ, we have some procedure. (We will
not mention them here.) An important one is to write the commutation relations
for x and p for the field. Then find the oscillators of the field, after establishing
a vacuum |φ;0⟩. These oscillators will excite the vacuum to first excited state or
it can oscillate the excited state to lower state (or vacuum for some examples).
Conventionally, they are an and a†

n, where n is some integer. They are also called
annihilation operator and creation operator respectively. Then we do some order-
ing, and our Lagrangian (see appendix A) L is ready. For ϕ, when quantized, the
action is given in terms of

L =−1
2
(
−∂

2
ϕ

2 +(mϕ)2) , (7.3.11)

and given the Euler-Lagrange, we can write;

∂
2
ϕ+m2

ϕ = 0, (7.3.12)

which is a simple linear equation and shows a Schrödinger equation for wave
function ϕ. For a set of scalar fields, we can write the Lagrangian for ϕ as

L =−1
2

N

∑
i

(
∂

2
ϕ

2
i +m2

ϕ
2
i
)
− 1

8
λ

(
N

∑
i

ϕi

)2

, (7.3.13)

which of course is interacting field.

7.4 Infinite Square Well

Infinite Square Well is, yet, another model of interest in quantum mechanics. It
is also known as “particle in a box” and “infinite potential well”. The model is
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too simple that is can be solved exactly without any approximations (we have
also used it in the past in book). So, it is just two walls and a particle between
them. Particle always attain the positive energy. So the particle’s energy can not
be zero, hence it will not sit. Particle can be found anywhere between the well,
the positions would be called “spatial nodes”

Figure 7.3: A 1D potential well, where inside well V (x) = 0 and otherwise V (x) =
∞.

We can write it as

V (x) =

{
0, xc − L

2 < x< xc +
L
2

∞, otherwise
(7.4.1)

where L is the length of well (or box). Because the potential inside the box is
zero (constant), particles are free to move anywhere in the region. We should also
note that infinite potential at the boundary pushes the box so the particle does not
escape the box. Overall, this is an interested and simple model.

Particle can never be at infinite potential, which is a similar case of classical
mechanics.

We will also assume that

ψ(x) = 0 for x< L,x> L (7.4.2)

and since we want the wave function to be continuous, we should also impose
some boundary conditions

ψ(x = 0) = 0, (7.4.3)
ψ(x = L) = 0. (7.4.4)
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Our task is now to search for wavefunctions related to infinite square well.
Since in the interval x ∈ [0,L], potential is zero we can write the Schrödinger
equation as

d2ψ

dx2 =−2mE
ℏ2 ψ, (7.4.5)

where E > 0 and E can be written in terms of wave-number

E =
ℏ2k2

2m
, (7.4.6)

so the Schrödinger equation becomes

d2ψ

dx2 =−k2
ψ, (7.4.7)

for which the solution wave function is

ψ(x) = asinkx+bcoskx, (7.4.8)

where a,b are two constants. We can find these constants by simply observing
that (7.4.3) implies that

ψ(0) = asink0+bcosk0, (7.4.9)

and that further implies that b = 0. So wave function solution simplifies to

ψ(x) = asinkx. (7.4.10)

To know about the constant a, we need to work with another boundary condition
i.e. ψ(x = L) = 0. Hence

ψ(x = L) = asinkx = 0, (7.4.11)

that further goes
kL = nπ, kn =

nπ

L
. (7.4.12)

So
ψn(x) = Asin

(nπx
L

)
(7.4.13)

where A is the normalization constant and we assume that n> 0, though it can be
negative as well. Doing the normalization, we get

ψn =

√
2
L

sin
(nπx

L

)
, (7.4.14)
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En =
ℏ2k2

n
2m

=
ℏ2π2n2

2mL2 , n = 1,2, · · · . (7.4.15)

We can check that in equation

En =
ℏ2π2n2

2mL2 (7.4.16)

every n vales gives different energy level. So, there is no chance of being degen-
eracy in infinite square well.

We can write the ground state with n = 1, which will have energy E ̸= 0.

n=1

n=2

n=3

n=4

Figure 7.4: Wave functions of infinite square well. Each ψn with nodes n−1.

7.5 Finite Square Well

In last section, we discussed infinite square well. In infinite square well, we had a
well with V (x) = 0 and with infinite potential boundaries. Potentials are important
elements of models. And potential well too. It is important to note that energy
inside the potential well can not be converted into other forms of energy. Because
we have trapped it there at the minimum of potential well.

There are few more interesting potential wells to discuss. We will discuss in
this section, two of them - Dirac Delta Potential Well and Finite Square Well.
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Finite square well is another simple model of quantum mechanics. Generally,
one can speak that finite square well is an extension of infinite square well but
with finite potential wells. In infinite square well, we just had to calculate things
about states inside the box. But in finite square well, as it will permit the wave
function to extend beyond the boundaries, we need to calculate the outside the
box as well.

Well, yes, the boundary conditions would differ in this case. But we won’t do
any boundary conditions in this case, which we recommend however, strongly to
reader.

Figure 7.5: Finite Potential Well

Outside the box in finite square box (or well) is not the case with infinite
potential but with finite potential. In finite square well case, potential requirements
are

V (x) =

{
0, |x| ≥ l
−V0, |x| ≤ l

(7.5.1)

where V0 is always positive. We need to find the states outside the box, without
defining boundary conditions in case. We have V (x) =V0 in that case. So overall
energy will be E −V0,then the Schrödinger equation is

d2ψ

dx2 =−2m
ℏ2 (E −V0)ψ (7.5.2)

We need to focus on bound states, i.e states with V0 > E.
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7.6 Scattering

In last three sections, we learned about Harmonic oscillators, infinite square well
and finite square well. We can add in this list a number of other important and
consequential models, but we will not do it here.

We should now move to other important topics as well. In this section, we will
overview briefly about scattering and resonant transmission in quantum mechan-
ics, where we will also analyze the incoming and outgoing waves.

Scattering is a consequential study of physics. It has its wide applications,
mainly in field theory and particle phenomenology. In quantum mechanics, it
would mean a little different when we say “scattering”.

Scattering in quantum field theory is quite interesting (however, this book is
not about that). Though we can - at least - introduce scattering in terms of field
theory.

A simple scattering process is

Figure 7.6: A Feynman diagram among many, a tree level 2 → 2, for αϕβϕ →
αϕβϕ. It is important to note that this is not the only way to draw diagrams, we
can map this diagram (conformally) to some disk or sphere and work on those
diagrams also.

Let us suppose, we have a barrier (of potential), we direct a wave towards it.
As shown in below figure

Scattering comes into play when the indicated wave hit the wall.
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When the wave hit the wall, there are two things to consider (one is scattering
and other is tunneling.) the incident wave will suffer the collapse and it would

either transmit through the wall or get reflected, as indicated in figure. For con-
vention, we will write A as incident wave, B as transmitted wave and C as reflected
wave.

We now can ask how much A would be transmitted and how much of it would
be reflected?

It is, however, a simple question. Before moving on, we need to define the
potential in this case

V (x) =


v(x), x ∈ [0,L]
∞, x< 0
0, x> L

(7.6.1)

where L is the length from the origin to well. We will also need a wave function to
incident on it. By choice, we take e−ikx which is also a zero potential solution. So,
in the region of v(x) the reflected wave should be just eikx. The change between
the incident and reflected wave is perhaps because of “phase shift δ”. Phase shift
can be understood by saying that “it is the shift in the phase”. Well, every wave
have their phases. The shift in those phases will be denoted by δ.
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Note that probability flux of both waves shall be same, however the direction
is only opposite. Energy of both waves would be same.

Scattering is not much interesting at this time. Where it is important is in
Quantum Field Theory. In QFT, scattering deals with cross sections, S-matrix,
and so on. Waves scattering importance comes in quantum mechanics in the cases
of square well(s) as well.

Node Theorem

Node theorem is a simple theorem in quantum mechanics associated to nodes of
wave-functions. Our aim should be understand this theorem not rigorously, as it
is not.

Recall the infinite square well (or finite well or even harmonic oscillators), the
bound states wave functions ψn have n−1 nodes.

n=1

n=2

n=3

n=4

Figure 7.7: Wave functions of infinite square well. Each ψn with nodes n−1.
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Chapter 8

System and Interactions

Back a few sections, we discussed the orbital angular momentum and spins. Both
are extensive in the sense of atomic physics and quantum mechanics. In this chap-
ter, we will focus on the sum of both angular momentum(s), which is called Total
Angular Momentum, J. We will also discuss the Clebsh-Gordon Coefficients1.

8.1 Total Angular Momentum

We might want to recall few things about angular momentum and spins.

• Angular momentum, represented by L, is given by

Lzψ = ℏmψ (8.1.1)

and L2 by the eigenvalue equation

L2
ψ = ℏ2l(l +1)ψ (8.1.2)

[Li,L2] = 0 (8.1.3)
1Consider reading arXiv : 1907.09930.
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• Spins are also intrinsic property in quantum mechanics. We represent it by
S.

Sz |φ;±⟩=±ℏ
2
|φ;±⟩ (8.1.4)

We can write the total angular momentum as the sum of both L and S. Why
does this matter?

The answer is straightforward: the total angular momentum, as we have seen,
is accountable for a lot of trivial commutation. Furthermore, the total angular
momentum is overall angular momentum that can tell us more deeply about the
system as a whole rather than the individual angular momentum.

Ĵ = L̂+ Ŝ (8.1.5)

When we couple the momentum, we call the basis of work as “Coupled basis”.
Uncoupled basis are in form of quantum numbers (l,n,ml,ms). However, in the
couple basis, we tensor product the l multiplets and s multiplets to have J multi-
plets.

The coupled basis can be denoted by (l,n,J,Jm). Why not Js?.

When we write coupled basis, it helps us to draw the spectrum for the system
also, which we will see in the upcoming time. The eigen-equation for J2 can be
written as

J2
Ψ = j( j+1)ℏ2

Ψ (8.1.6)

where Ψ is a coupled state. The multiplets equation be can written as

(lmt)× (smt) = ∑Jmt (8.1.7)

→ (lmt)×
(
±1

2

)
=

(
l +

1
2

)
×
(

l − 1
2

)
(8.1.8)

where subscript mt is used to depict multiplets. Note that l multiplets have m in
it, so total angular momentum would be ranging through all the m.

We can better understand it if we take an example. Let us suppose we have
two electrons with spins ±1

2 . (We are not indulging with l here.)
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We can write the 4 configurations of uncoupled states as (α,β for electrons
representations) in form of (sα,ms;sβ,ms)

• |1
2 ,

1
2 ; 1

2 ,
1
2⟩ (↑↑)

• |1
2 ,

1
2 ; 1

2 ,−
1
2⟩ (↑↓)

• |1
2 ,−

1
2 ; 1

2 ,
1
2⟩ (↓↑)

• |1
2 ,−

1
2 ; 1

2 ,−
1
2⟩ (↓↓)

Our work is to create a coupled basis (sα,sβ,S,Ms) where S = |sα + sβ|. In so, we
will only have two values of S = 0,1 and four values of MS. They are

• |1
2 ,

1
2 ,0,0⟩ as ms = 2s+1 =⇒ 2×0+1 = 1

• |1
2 ,

1
2 ,1,(1,0,−1)⟩, there are three ms in the square brackets.

this was the coupled eigenstates (wave-functions). This particular example was
of Spin-Spin coupling. We can do, similar like this, L-L coupling and Spin-Orbit
coupling which we introduced at the beginning of the section.

8.2 Hamiltonian Corrections

In the last section, we reviewed the addition rule in angular momentum. Straight-
forwardly it is a simple law of making two uncoupled states a coupled state. In
the last section, we talked about spin-spin coupling for two spins of ±1/2. There
are a few practical applications of spin-spin coupling - which, however, we will
not see here.

One example would be from organic chemistry, where we observe the spin-
spin coupling in the hydrogen atom’s NMR (Nuclear Magnetic Resonance) spec-
trum.

Before we proceed, let me point out important points.
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• Spin-Spin, Spin-Orbit and many like Pauli equation, Darwin correction, rel-
ativistic correction, Dirac equation, Hyperfine correction, Lamb shift are a
few corrections to Hamiltonian of a system. These corrections appear in a
system because of the splitting in the spectra they carry.

• It is somewhat important to include them in any system.

We can not talk about each of them in detail. But concerning the vast importance
of some of them, we will talk about them in the coming sections.

8.2.1 Pauli Equation

Pauli equation is written as

HPauli|ψ⟩=
[

1
2m

(σ · (p−qA))2 +qφ

]
|ψ⟩= iℏ

∂

∂t
|ψ⟩ (8.2.1)

where φ− qA = Π (Π is kinetic momentum, φ is canonical momentum) and σ

are Pauli matrices. It would be important to note that ψ can be considered as two
component spinor (of which we will learn more in Dirac equation, as it is called
Dirac spinor). φ is the scalar potential, q is the charge, A is the vector potential.

Because of the coupling to EM

φ → Π = φ− q
c

A (8.2.2)

(The bold letters are vectors.) We take the Pauli equation in account when the
spins are interacted with the external electromagnetic field. (We can derive the
Pauli equation from the equation

H = µ ·B =
eℏ

2mc
σ ·B (8.2.3)

from the section on the dipole moment with the following)

(σ ·a)(σ ·b) = (a ·b)1+ iσ · (a×b)
(r ·p)(a ·p) =

(
p2)1+0

H =
p2

2m
1=

(
σ · p2)(σ ·p)

2m

(8.2.4)
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Note that in Pauli equation, we have the case

v<< c (8.2.5)

whereas, in Dirac equation we will observe the relativistic effects.

8.2.2 Dirac Equation

Dirac equation is the relativistic equation which governs some purposes of quan-
tum electrodynamics as well. Dirac equation is written as a dispersion relation

E2 = (pc)2 +(mc2)2 (8.2.6)

we may have heard about the famous equation; E = mc2, - we have dropped the
bold letters convention - the Dirac equation is a little stretched equation of the
same famous equation. One, to find the H correction, needs to do the following

H =
√

p2c2 +m2c4 (8.2.7)

= mc2
(

1+
p2

m2c2

)
(8.2.8)

extracting the square root

H = mc2
(

1+
1
2

p2

m2c8 −
1
8

p2 p2

m4c4 + · · ·
)

(8.2.9)

Which it not satisfactory. We need to find another fact to eliminate the square
root, a better way. We have such one

HDirac = cα · p+βmc2 (8.2.10)

where c is a constant and α matrices

α =

(
0 σ

σ 0

)
(8.2.11)
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and β matrices are

β =

(
1 0
0 −1

)
(8.2.12)

We can write the Schrödinger equation for the Dirac spinor (two-component)

HDirac ψDirac = iℏ
∂ψ

∂t
(8.2.13)

and when the Dirac equation is coupled to electromagnetism, p couples to A.

8.2.3 Darwin Correction

Last time, we briefly talked about the correction in a basic Hamiltonian. We
did the Dirac correction and Pauli correction, which were relativistic and non-
relativistic, respectively. Both were related to the spins and their coupling to either
exterior electromagnetic field or making it to be in the sea of Dirac ideas of spinor
in relativistic limits.

In this subsection, we will continue our exploration of these corrections. In our
list of corrections, we will be discussing the Relativistic and Darwin correction
and, then Spin-Orbit coupling.

Before we go further, let us clarify that we will continue the scheme of being
brief in these discussions as these discussions are part of a more diverse-d edition
of quantum mechanics and field theory as well.

Darwin’s correction comes from the Dirac equation and can be written as

HDarwin =
πe2ℏ2

2m2
ec2 δ(r) (8.2.14)

and, in fact, only of concern when l = 0. δ(r) = ∇2V/4πe2. Expectation value
can be written as

⟨ψnlm|HDarwin|ψnlm⟩=
πe2ℏ2

2m2
ec2 |ψnlm(x)|2 (8.2.15)
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where we will assume that ψ vanishes at the origin for l = 0.

⟨ψn00|HDarwin|ψn00⟩=
πe2ℏ2

2m2
ec2 |ψn00(0)|2 (8.2.16)

In turns out that the wave function can be determined (by following the dis-
cussion we had on polar coordinates)

|ψn00(0)|2 =
1

πn3a3
0

(8.2.17)

where a0 is the Bohr radius. In this way the expected value is

⟨HDarwin⟩n00 =
4e2ℏ2

8n3a3
0m2c2

=
e2ℏ2α2m2c2

2n3a0m2c2ℏ2 =
2nE2

n
mc2 (8.2.18)

And this actually replaces the l = 0 term in the spin-orbit correction (which should
be zero) and making the equation correct.

Darwin correction is related to related to the zitterbewegung of the relativistic
electron. A straightforward example of this correction is in the Hydrogen atom.

“Sir Charles Galton Darwin (1987-1962), a British physicist, was a grandson
of the Charles Darwin of evolution fame. Sir Charles was the first, with Gordon,
to work out the exact energy levels of Hydrogen according to the Dirac equation
and thereby discovered the eponymous term in the levels. He worked out the
Lagrangian and Hamiltonian for a classical motion of several interacting charges
correct to O(v2/c2). He also worked on statistical mechanics (Darwin-Fowler
method). Later in life, he took part in the Manhattan project.”

Darwin’s work was referred to in the original Foldy-Wouthuysen article: Phys
Rev. 78 no.1, 29-36, 1950.

8.2.4 Relativistic Correction

The fun (and the pun) begins here. The relativistic correction is for energy levels.
We will briefly discuss a few relativity concepts and basic principles before we try
to understand the topic itself.
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• In basic sense, we calculate the relativistic effects when the speed is close
to that speed of light (c = 3×108m/s). v = c.

• Consider a uniformly moving object and suddenly, an increase in energy
makes the object to reach the speed of light. What happens when it goes
with the speed of light?

Relativity is a vast subject, which has been basically divided into two studies;
Special Relativity and General Relativity. We would only need special one here.
General relativity is a part of an ever-longing study of gravity, initiated by Einstein
first. On that subject, we are still pondering, and since it does not fit with quantum
mechanical principles, we (physicists and mathematicians) are in another hurry
of some unified theory. When we move from non-relativistic arena to relativistic
arena, the energy of the electron changes to

mc2 +
p2

e
2m

→
(

p2c2 +m2c4)1/2
= mc2

(
1+

p2c2

m2c4

)1/2

(8.2.19)

and we get when p2 = 0 (nilpotent of index 2)(
p2c2 +m2c4)1/2

= mc2 +
1
2

p2c2

mc2 − 1
8

p4c4

m3c6 + · · · (8.2.20)

≈ mc2 +
p2

2m
− p4

8m3c2 (8.2.21)

the correction is the last term.

Hence, the relativistic correction is

HRC =
p4

8m3
e′c

2
(8.2.22)

where me′ is the corrected mass, which however does not concern us.

8.2.5 Spin-Orbit Correction

The main reason for the spin-orbit coupling is the interaction between the mag-
netic moment with the intrinsic (orbital) moment of the electron.
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Spin-Orbit is a relativistic effect observed when the electron’s spin interacts
with the orbital. The Hamiltonian received in this interaction

Hspin−orbit =
e2

2m2
ec2

1
r3
−→
S ·−→L (8.2.23)

where 1/r3 is written as the expectation value〈
1
r3

〉
=

Z3

n3l(l +1/2)(l +1)
(8.2.24)

where Z is the effective atomic number.

⟨L ·S⟩= 1
2
(〈

J2〉−〈L2〉−〈S2〉)= ℏ2

2
( j( j+1)− ℓ(ℓ+1)− s(s+1)) (8.2.25)

The total energy correction observed is

∆E =
β

2
( j( j+1)− ℓ(ℓ+1)− s(s+1)) (8.2.26)

where
β = β(n, l) = Z4 µ0

4π
gsµ2

B
1

n3a3
0ℓ(ℓ+1/2)(ℓ+1)

(8.2.27)

Concluding Notes on Interactions; So far we have observed many interac-
tions which result into further corrections in the (premature) Hamiltonian. There
are definitely more interactions that can be studied, for instance Hyperfine split-
ting or Lamb shift. However, we will not do them here.

These interactions are not just theoretical or conjugated, they exist and are
easily observed in the laboratory.

8.2.6 Clebsch-Gordan Coefficients

We are now in the state of discussing how two total angular momentum (of two
particles) are coupled to a total-total angular momentum.
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For something like
J = j1 + j2 (8.2.28)

where
j1 = L1 +S1 (8.2.29)

j2 = L2 +S2 (8.2.30)

we write the equation for J in braket notation

|JM⟩=
j1

∑
m1=− j1

j2

∑
m2=− j2

| j1m1 j2m2⟩⟨ j1m1 j2m2 | JM⟩ (8.2.31)

where M is
M = m1 +m2 (8.2.32)

Clebsch-Gordan coefficient are written as

ΨJM = ∑
M=M1+M2

CJ
M1M2

ΨM1M2 (8.2.33)

These coefficients can be calculated easily. We do not show how. But we include
a chart to provoke the reader to learn about it more as it is a broad subject even in
particle physics.

In Mathematica, one can compute these coefficients using the command:
“ClebschGordon[{ j1,m1},{ j2,m2},{ j,m}]”.
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Chapter 9

Entanglement and EPR

Now we go to the topic for which quantum mechanics is (in)famous, Entangle-
ment. This has a history, which has characters like Einstein as well deferring the
theory as unreal and unnatural. Our investigation (of course, briefly) would be
about the entangled states set out by Bell and locality.

Before we start discussing the entangled states, we might want to introduce
tensor products in states.

Tensor Products: for two vector spaces V and W we write the tensor product
as V ⊗W . Let us say that ei is the basis of V and f j is of W . After tensor product

v⊗w =

(
∑

i
viei

)
⊗

(
∑

j
w j f j

)
= ∑

i, j
viw jei ⊗ f j (9.0.1)

dim(V ⊗W ) = dim(V )×dim(W ) (9.0.2)

For the tensor product V ⊗W , we can write the wave function

Ψ = ∑
i

αivi ⊗wi (9.0.3)

which is written as a superposition of v⊗w, where v ∈V,w ∈W .
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Note that if we can calculate the Ψ is the terms of v or w only, then Ψ is not
entangled. It has to be depended on each other, as entanglement suggests.

Let us say that V has basis e1,e2 and W has basis f1, f2, then the most general
state is

ΨA = a11e1 ⊗ f1 +a12e1 ⊗ f2 +a21e2 ⊗ f1 +a22e2 ⊗ f2 (9.0.4)

which can be put under in a matrix E

A =

(
a11 a12
a21 a22

)
(9.0.5)

where we put forward a condition: matrix E determinant should not be zero, if it
is for a non-entangled state. You may check it yourself, by comparing the coeffi-
cients.

9.1 Entangled State

In last lecture, we briefly touched entanglement. Entanglement, in simple words,
is an event seen frequently in quantum mechanics about coupled states. What
are these coupled states at first? Why they become dependent of each other after
getting entangled? Does causes on one produces result on another? What is EPR
paradox?

These are the questions which we will address today. As explained earlier, Ψ

a entangled state of two spin particles is

Ψ =
1
2

(
|+⟩x ⊗|+⟩y + |−⟩x ⊗|−⟩y

)
(9.1.1)

but we will take a much simpler entangled state (of the same setting) for discus-
sion. Consider two particles with spins either up or down. The important catch of
entangled states is that if one particle is found with spin up, then the other particle
is (strongly) spin down. This only happens with entangled particles.

Note that it is also not important that how much separated the two particles
are, once they are entangled, they communicate with each other at an impossible
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speed which, perhaps, break the relativity conjecture that no information can travel
faster than speed of light.

Entanglement will still hold if we take the two particles are either horizons of
the universe.

Entangled Electrons See these two particles these are entangled particles, came

BA
Figure 9.1: Two particles are entangled to each other.

close together and are synced up. It can be aided that these two particles come
from decay of a spin 0 particles, hence A and B will be spin ±1/2 particles. Now
we take A and B far apart and we find that spin of A is up. The spin of B must be

BA

Figure 9.2: We take the particle apart. Measure first particle’s spin, suppose that
it is “up”

down.

BA

Figure 9.3: One state is observed up, we will not disturb the other state.

9.1.1 Bell-Basis States

Bell-Basis states are entangled states of two particles (qubits - if we talk specif-
ically computations) which is a simplest construction for entanglement. We will
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work out these basis states in this lecture. In a general entangled state Ψ0, we have

⟨Ψ0|Ψ0⟩= 1 (9.1.2)

so if one particle wave function is collapsed (from the superposition) in one of the
basis (will explained soon), other’s wave function collapses as well.

So we create four dimensional basis with |Ψ0⟩

1
2
(|+⟩⊗ |+⟩+ |−⟩⊗ |−⟩) (9.1.3)

we write the basis as

|Ψi⟩= (1⊗σi) |Ψ0⟩ , i = 1,2,3 (9.1.4)

σi unitary matrices are have been introduced before. For Ψ1, we can create the
state

|Ψ1⟩= (1⊗σ1) |Ψ0⟩ (9.1.5)

|Ψ1⟩=
1√
2
(|+⟩ |−⟩+ |−⟩ |+⟩) (9.1.6)

⟨Ψ0|Ψ1⟩= 0 (9.1.7)

Similarly, we can construct other states |Ψ2⟩ , |Ψ3⟩

|Ψ2⟩=
i√
2
(|+⟩ |−⟩− |−⟩|+⟩) (9.1.8)

|Ψ3⟩=
1√
2
(|+⟩ |+⟩− |−⟩|−⟩) (9.1.9)

and they are orthogonal to Ψ0

⟨Ψ0|Ψi⟩= 0 (9.1.10)

which resembles the function

⟨Ψi|Ψ j⟩= δi j (9.1.11)

In can be seen that
|−⟩ |−⟩= 1√

2
(|Ψ0⟩− |Ψ3⟩) (9.1.12)
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(it is easy to check)

|+⟩ |−⟩= 1√
2
(|Ψ1⟩+ i |Ψ2⟩) (9.1.13)

|−⟩ |+⟩= 1√
2
(|Ψ1⟩− i |Ψ2⟩) (9.1.14)

|+⟩ |+⟩= 1√
2
(|Ψ0⟩+ |Ψ3⟩) (9.1.15)

these are called “Bell-Basis states”.

9.2 EPR Paradox

In the last section, we discussed Bell states and entanglement. We saw how con-
structive it is for quantum mechanics. And sure it is a perfect principle of physics.
However, rationally questioning it is.

It (entanglement and wave function) was fairly obnoxious to Einstein, Rosen,
and Podolsky that they wrote a paper asking some good-old questions about en-
tanglement and quantum mechanics. Quoting quantum mechanics as incomplete.
The paradox (the paper) is called EPR, published in PRL 1935.

It was also a fair call to “locality and non-locality” in quantum mechanics. In
this small section, we will try to cover the EPR Paradox and how the paradox was
received technically. With philosophy, of course.

From the view of EPR, we can take out that if a particle’s eigenvalue is definite
it should not be that another eigenvalue should be undefined. But that is our critical
Heisenberg’s uncertainty relation. So, EPR says that ψ the wave function is not
yet complete.

EPR paper also emphasized on locality and non-locality in quantum mechan-
ics. Locality means that in a theory, if one thing happens at one location then
there can’t be immediate effects from it at another location. It is easy to see that
quantum entanglement is non-local.



144 CHAPTER 9. ENTANGLEMENT AND EPR

The only way out of this paradox - which was mainly that definite results on
particle A created two wave function for particle B, where A and B were entan-
gled - for most of the physicists, including Einstein, was to assume some hidden
variables so that quantum entanglement never happens. Bell theorem suggests that
we can construct local hidden variables can be introduced to finish the incomplete
reality.

Bell theorem suggests that we can construct local hidden variables can be
introduced to finish the incomplete reality.



Chapter 10

Perturbation and Relativity

Perturbation Theory is a well-defined method to calculate and study deeply about a
system. However, this book does not carry sufficient merit to discuss perturbation
techniques and methods. We do provide suggested readings for it.

In this chapter, we briefly comment on perturbation theory. Then we finally
close up the book introducing relativity for further reading of the subject.

10.1 Perturbation Theory

The idea is simple, and we start with a simple Hamiltonian H to describe a system,
and then we add a small perturbative Hamiltonian δH representing a disturbance
to the original system. The resulting system is perturbed system. The Hamiltonian
becomes

H ′ = H + εδH (10.1.1)

H ′,δH,H are all hermitian as Hamiltonian(s). ε is a small parameter which we
will call “order”. Before we proceed, we need to discuss degeneracy. Degeneracy
means at the same level. In quantum mechanics, we have different states at the
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Figure 10.1: The bottom state is ground state, the energy responds for one state,
so it is a non-generate level. However (for n=1), it is two states so this level, so a
degenerate level. And so on.

Figure 10.2: A non-degenerate system.

same energy level. For instance, consider a system with the following energy

Enψn =CnHnψn (10.1.2)

where Cn are constants of state ψn. If En corresponds for more than one ψ states
(let it be ψn and ψm, m ̸= n), then it is called “degenerate level”.

Where comes the perturbation? What effects δH does it bear to a system?

A vast majority of quantum systems can not be solved exactly. We need to
approximate the answer to some degrees. So we part away two parts

H = H0 + εδH (10.1.3)
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where H0 is the solvable solution.

Ĥ0ψ
(n)(x) = E(n)

ψ
(n)(x) (10.1.4)

n are the order.

Ĥψ(x) = Eψ(x) (10.1.5)

Since we can write the things in small parameters, we write

ψ(x) = ψ0(x)+ εψ1(x)+ ε
2
ψ2(x)+ . . .

E = E0 + εE1 + ε
2E2 + . . .

(10.1.6)

which is an eigenvalue equation,(
Ĥ0 + εV̂

)(
ψ0(x)+ εψ1(x)+ ε2ψ2(x)+ . . .

)
=(

E0 + εE1 + ε2E2 + . . .
)(

ψ0(x)+ εψ1(x)+ ε2ψ2(x)+ . . .
) (10.1.7)

Now we can solve order by order ε.

10.2 Relativity Begins

So far, we have dealt with non-relativistic quantum mechanics, i.e., v << c, but
relativity is of much importance in quantum mechanics. And since the common
notion that quantum mechanics and relativity do not go hand to hand is famous,
which is absolutely wrong, however, we will see how early physicists (which
included Dirac, Feynman and many others like Pauli) developed a relativistic
version of quantum mechanics, which initially founded quantum field theory ap-
proach to systems.

10.2.1 Jumping into it

Now, once we have checked through all preliminary subjects in quantum me-
chanics non-relativistic-ally, we can introduce a little bit of relativistic physics in



148 CHAPTER 10. PERTURBATION AND RELATIVITY

quantum mechanics. Contrary to wide immature belief that quantum mechanics
and “Relativity” never go along, we see that it does go along if we are nice to it.

Einstein’s formulated relativity is a two-piece theory of special relativity and
general relativity. In what follows from here, we will not talk about the latter as
it comes under the scrutiny of quantum gravity. Nonetheless, special relativity is
not as sensitive as others with quantum mechanics.

This is the motive so far. First, we need to review some basics of relativistic
physics. Relativistic effects are important, and cannot be ignored when we are
close to that speed of light. Relativistic effects comes with geometries, which
include metric spaces, tensors, manifolds, etc. However, we can ignore these at
the moment. But it can not be ignored once the treatment of topology becomes
relevant.

We will cover up some definitions first. Spatial transformations means trans-
formations along one coordinate, for instance, position. In Relativity, Lorentz
transformations become prominent, which is defined as a family of transforma-
tions from one frame to another frame. The change of “frame” is necessary as in
relativity, two frames are observing different universes.

So, we have a set of coordinates in D = 4 dimensions (x,y,z, t) where x,y,z
are spatial coordinates and t is only time coordinates. Each of them are one of the
four dimensions.

When one wishes to go to (x′,y′,z′, t ′) frame from (x,y,z, t), one can do the
following transformations. These are called Lorentz Transformations.

x′ = γ(x− vt)
y′ = y
z′ = z

t ′ = γ

(
t − vx

c2

) (10.2.1)

And a simple spatial transformation is

x′ → εx. (10.2.2)

When we group together the spatial and Lorentz transformations we get Poincare
transformations. (We can see them also as Groups, however, we refrain of it here.
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t

Figure 10.3: xyz-t coordinate frame. t is always going forward here. The three
arrows are for spatial coordinates.

Poincare group would be a large group of all the transformations such as spatial,
Lorentz and boosts.)

We do not want to know the physical observation that caused by these rela-
tivistic effects. However, they are important too. It is when relativity is inserted
into a high-energy region and particularly small-scale important for us now.

Let us define first what are space-time effects. The four dimensions that we
have specified above constitute space-time. It is seen as a continuous bed-sheet
throughout the universe. A location in the space-time is defined by the coordinates
(or frames for that matter).

In Relativity, we have a general equation as

E2 = p2c2 +m2c4, (10.2.3)
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this is called Energy-Momentum relation. So, H operator can be written as

H2 = p̂2c2 +m2c4, (10.2.4)

and this give us Klein-Gordon equation in normal units(
1
c2

∂2

∂t2 −∇
2 +

m2c2

ℏ2

)
ψ(t,x) = 0. (10.2.5)

One can now extract the wave function ψ. Note that it would be a scalar.
Reader should also note that in Eq. (10.2.3), there are two solutions, i.e. positive
energy and negative energy. While writing the Dirac equation, which is different
than Klein-Gordon and relativistic worked by Paul Dirac, these negative ener-
gies corresponds to “anti-particles” and their corresponding anti-wave functions.
Dirac believed them to be coming from sea and called it “hole theory”. However,
explaining these are beyond this book’s objectives.

We do relativity with some geometry and notations. One of them is f our−
vector notation. Such a vector is representative by aµ where µ = 0,1,2,3. We as-
sume1 that 0 corresponds to t and 1,2,3 corresponds to x,y,z respectively. Hence
a0 is time-like part of the vector and ax,y,z are space-like dimensions. We also
focus on the geometry, for instance, the metric.

Gravity in relativity is seen as an effect of space-time. Riemann had the idea
that gravity was, indeed, an effect of space. But, only after the coupling of space-
time was initialized, it was found by Einstein and other mathematicians that grav-
ity was an effect of bending in space-time. There are more effective ideas and
constructive thoughts in relativity, and we refer the reader to a specific book on
relativity to learn more.

10.3 Quantum Gravity

It is so ambitious to include a section of ‘quantum gravity in this book. Since
it is a very advanced and still on-work work. Quantum gravity is a theory that

1It is a convention and can be changed.
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Figure 10.4: A simple Feynman diagram of two scalar scattering. Each particle
here has a world-line which has history of that particle.

quantifies gravity at a level where our usual quantum mechanics works. Such
kinds of quantization are not possible by a mere ‘quantization process’ that is
explained in Appendix B.

The most promising and eloquent theory is “String Theory”. We can not sum
up the theory here. The reader must be familiar with quantum field theory, su-
persymmetry, and relativity (not to mention other mathematical methods) before
reading string theory (and superstrings).

In short, our world is made from particles. (We learn about particles, their
interactions and amplitudes in high energy physics and particle physics.) These
particles interact with each other and hence unfolding a plethora of events. We
can draw these interactions (or events) using Feynman diagrams. In string theory,
we, somewhat, replace these particles with small strings. The way these strings
behave determines the matter. It is a hard intuition. These strings can be either
open or closed. Strings can do what particles can, they can interact with each other
and we can write the string amplitudes for it. (An amplitude is generally a matrix
of the interaction.)

In string theory, gravity is inevitable. Since it has gravitons in it and gravitons
indicate the presence of gravity. There are, of course, more ways to check gravity.
There is not just ‘one’ string theory. String theory has many variations depending
on boundary conditions, group theory that represents it, number of supercharges it
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has, and number of dimensions present. In a naive sense, we can categorize them
into five theories2.

Figure 10.5: A string diagram. Worldlines are replaced with worldsheet.

But it seems that these kind of string theories require supersymmetry3, that we
have not found yet. But we believe that we will in near future. It also requires
the space-time dimensions to be 26,11,10 and so on. Despite all these, the theory
is beautiful and is convincing. The theoretical beauty has initiated a lot of other
physical researches.

2These are the type we theories, type IIA, type IIB theories, E8 × E8 heterotic theory, and
SO(32) theory. Each of these is equivalent to each other by string dualities.

3Supersymmetry is a symmetry of particles. It tells us that fermions and bosons, the two
possible configuration of statistics in particles, are connected with other each.



Appendix A

Lagrangian and Instantons

Instantons are general solutions for non-perturbative system1. Actually, they are
solution to Euler-Lagrange equations in Euclidean space-time. Firstly, a Euler-
Lagrange equation is of kind

∂L
∂ fi

− d
dx

(
∂L
∂ f ′i

)
= 0, (A.0.1)

where f is some function2. We solve the differential equation and then we get an
equation which, sometimes, is sufficient to know much about the field. In order to
learn about that, we need to understand L which is called Lagrangian of a system.
Generally, it is

L =
1
2

mẋ2 −V (x), (A.0.2)

where V (x) is potential of the system and first term is usual kinetic energy. (L is
different than H in terms of a minus sign.) Technically, L is Lagrangian density,
L is the Lagrangian

L =
∫

Ldx, (A.0.3)

1Non-perturbative system are those system where there is not any inclusion of outside energy.
While perturbative system has perturbation, i.e, deviation

2In most of the quantum cases, the function is of momentum.
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and an action (which encodes basically every thing about the system) is

S =
∫

Ldt =
∫ ∫

Ldx dt, (A.0.4)

and A.0.1 is giving us equation of motion for system of Lagrangian L . In simple
words, (A.0.1) is just a sophisticated version of F = ma. We can now write the
path integral, which is basically functional integral of the path x(t). We can write
these path integrals as

U =
∫
[Dx]eiS/ℏ. (A.0.5)

Euclidean space-time is a little different than Minkowski space. In Euclidean
space time, we do

t →−iτ (A.0.6)

where τ is imaginary time. This is called Euclidean transformation. Under this
transformation

L → LE , (A.0.7)

where E subscript represent Euclidean-ness of the L (Euclidean Lagrangian). Un-
der (A.0.6), Eq (A.0.2) changes to

LE =
m
2

(
dx
dτ

)2

+V (x). (A.0.8)

The difference is the minus sign which is turning upside down the potential. This
is consequence of Euclidean equations of motion. So,

SE =
∫

LEdτ, (A.0.9)

this is Euclidean action.

Potential for real time Potential for imaginary 

Figure A.1: Potential with minima at x =± gets inverted in imaginary time. This
is related to a concept called “Tunneling”.



Appendix B

Quantum Field Theory

Quantum field theory (QFT) is not something which can be summarized in one
appendix chapter. However, we try to introduce few things about QFTs to the
reader.

The idea of field theories is a holistic approach that has its roots in many
physics, to name two; high energy physics, and condensed matter physics. How-
ever, the latter one uses a slightly different field theory strategy compared to high
energy physics, which we will discuss somewhere below. One striking and most
important similarity between Quantum Field Theory (QFT) and Statistical Field
Theory (SFT) is Renormalization Group. Furthermore, when we have a H , a
Hilbert space, we can try to generalize the properties of it using ordinary quantum
mechanics briefly. But to learn about the fields, which is a broader perspective
to understand the physics of a particular regime, we need to consider the theory
which will allude us to talk about the generalization of free and interacting models
of that regime. So, that is why we speak of field theory in general.

Generally, a field theory is not quantized until it is made because roughly any
field theory is an infant classical theory. Some classical field theories, for instance,
Einstein’s Gravity, face inconsistencies and constraints when we try to quantize
them using regular quantization (however, there are some ways to quantize grav-
ity, in string theory, which is a question and part of Quantum Gravity). Some
field theories are easily quantized; an elementary example is classical scalar field
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theory, which we will denote as ϕ. This scalar field theory for some time will
entertain us. In what follows, ϕ is a free field, excluded from any kind of external
perturbation and interactions, except in one example it will be otherwise.

Any field theory, take Newton’s field, we have some equations of motion
describing the field. For a classical version of field theory we can write those
equations using “Hamilton Mechanics”. And for a quantum version, we use “La-
grangian Mechanics” (or action). Both are extremely powerful tools. So, how can
we write a linear classical theory of ϕ with some mass “m”? For such, we write
the Lagrangian (or action)

L =−1
2
(
−η

µν
∂µ∂νϕ+m2

ϕ
2) (B.0.1)

where we work in (+−−−) signature1, ∂µ = ∂

∂µ and ∂2 = ∂µ∂µ. It is explicitly
mentioned in Lagrangian (B.0.1) that it is a relativistic theory. We can now write
the Klein-Gordon equation2 related to ϕ using “Euler-Lagrange Equation”

η
µν

∂µ∂ν +m2
ϕ = 0. (B.0.2)

The Euler-Lagrange equation is a differential equation (much like the Schrödinger
equation but more powerful), we write them naively as

∂L
∂ fi

− d
dx

(
∂L
∂ f ′i

)
= 0, (B.0.3)

where f is some function3. We solve the differential equation (B.0.3), and then
we get an equation which, sometimes, is sufficient to know much about the field.
(B.0.2) is a classical solution, and we want to know the quantum properties of the
ϕ. There where the “quantization” comes. Quantizing fields go back to electro-
dynamics. A very successful model of quantization of classical field, at that time,
was only “Quantum Electrodynamics” (QED). Quantization can be thought of in
mainly two ways: Canonical Quantization and Path Integral Quantization. Both
are important ways for quantization. For instance, finding Instantons in quantum

1Also c = ℏ= 1, which are natural units in QFT.
2This is a classical solution (??), however, we can say it is a Klein-Gordon equation. But not a

wave equation. For that, we need to quantize ϕ and then use Euler-Lagrange equation.
3In most of the quantum cases, the function is of canonical variables.
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theories can be done using path integral approaches, and most of the fields can be
easily quantized using canonical variable and oscillators setup. String models, a
very proclaimed theory for quantum gravity, can also be quantized in both ways4.

4Path integral approach will be replaced by Polyakov integral, a good discussion can be found
in.
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Appendix C

Particle Physics

In this appendix, we will discuss few particle physics. However, we repeat, it is a
vast subject and should be taken more seriously and comprehensively. In particle
physics, we deal with matter and forces. The forces are electromagnetism, weak
and strong forces. We do not take gravity here, since that becomes a part of
quantum gravity. We do not study quantum gravity in particle physics as so far.
The matter, we say, are consists fermions. These fermions can later be categorized
into hadrons and leptons. Fermions are half integer spins particles. Some fermions
are electron, proton, pi-meson, neutron. All these particles create a perfect model
that describe the universe called “Standard model”.

Electron is a lepton. Proton, neutron and pi-mesons are hadrons. Leptons are
fundamental particles but hadrons are not. The latter are made up of quarks. There
are six types of quarks - up, down, top, bottom, strange and charm. When these
quarks assemble themselves in certain manner, they form hadrons.
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