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Abstract

In the following discussion, we study the literature of Unparticle Physics and its interaction
with high energy physics in the presence of the standard model, for instance, the mono-photon
process and mono-Z production. We also review the propagators of unparticle regimes.
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1 Introduction and Discussion

Unparticle Physics, which was introduced to propose unnatural and unseen scale-invariant inter-
actions in high energy physics, which converges at the Standard Model (SM) energy, has quite
physics in it right now. They usually do not interact with SM particles in a usual manner. It
was proposed by Georgi [1, 2] in 2007. The most (and the lead) attractive point of the theory is
scale invariance. Scale invariance implies that a theory with a scale-invariant lagrangian would not
change by changing the theory’s scale; for instance, a massless scalar field is scale-invariant.

Scale-invariant theories are considered to be conformal invariant theories by default. Scale-
invariant stuff mass is believed to be zero, as non-zero masses cannot pose for scale invariance, as
they have mass dimensions. The primary example of scale invariance is a massless scalar field. A
detailed paper is written already on the bounds of conformal invariance of unparticle operators [3],
which we will discuss later.

Unparticle Physics arises from a weakly coupled Bank-Zaks field [4]. Since the derivation,
unparticle physics has been explored a lot in many ways [5–8]. We mention here some recent
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development in unparticle physics, especially theoretical aspects. The paper [1], which introduces
the stuff, tries to explain this unparticle scheme. For very high energy, we can say that standard
model fields and fields of non-trivial IR fixed point, which we call Banks-Zaks fields (BZ), will
interact through a large scale called MU . This MU suppresses the obvious nonrenormalizable
couplings in the coupling when the scale is below MU . For larger MU , the following Eq (1) does
not allow the unparticle stuffs to couple with ordinary matter. These couplings, when BZ and SM
fields interact, have been given a form

1

Mk
U
OSMOBZ , (1)

where k = dSM + dBZ − 4 and BZ gives the OBZ operator with dBZ mass dimension and OSM

is built out from standard model with dSM mass dimension. Because of the fixed point nature, BZ
has non-trivial scale invariance-which emerges at some energy level ΛU -making the renormalizable
couplings in BZ to perform dimensional transmutation2. It can be easily seen that BZ fields can
act as OU fields below the defined ΛU by matching the operators, which then makes the interaction
look like

CU
ΛdBZ−dU
U
Mk

U
OSMOU , (2)

where CU is the coefficient function, and dU is the scaling dimension of the unparticle operator,
and now it will be treated as a scalar property. In particular, dU represents the number of massless
unparticles. We will later see that dU can be a non-integral number.

Then, for the best low-energy theory, Georgi chooses that our OU to be of the lowest dimension.
The Eq. (1) gives an emergence to our unparticle effective field theory which is actually Eq. (2).
Thus, Eq. (2) is the effective field theory which we can interpret as an unparticle physics field.
Eq. (2) is no any different from Eq. (1) in terms of IR scale invariance because when BZ fields
decouple from SM field at low-energy, IR scale invariance is preserved.

It is not necessary that probes of unparticle physics can only be found at TeV scales. If the
theory is perturbative, then for smaller MU , we can try to probe these kinds of stuff in LHC (or
any other collider). We will discuss this in detail later. U particles must be massless. However,
they are believed to have some continuous mass spectra, hence not any invariant fixed mass. There
can be solutions to this mass query defined under the CFT boundary concepts, of which we are
not sure. It was also noted that these U energies if found in the collider, will make us understand
the missing energy distribution caused by the non-integral value of dU , of which definition we will
clear later.

2This links to the mass dimensions we are discussing. These dimensional transmutations are easily seen in massless
non-abelian gauge theories.
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So, what does this theory produces at low-energy below the ΛU?
It will produce some irregular forces. That is a very typical phenomenon that must happen.

Our paper does not have the scope of those irregular forces. Notably, we mention here that the EFT
will produce unparticle stuff at low energy, serving as a QFT and partially contributing to missing
energies. This is not such a complicated thing to imagine, as in (2), we mentioned the factors.
Moreover, these factors will give us the results we discussed now (missing energies). There is a
probability distribution of the interaction, which does require the density of final states. However,
for our low-energy scheme, we can overthrow this requirement because of scale invariance. Then
our matrix element in a vacuum is [1]

⟨0|OU (x)O
†
U (0)|0⟩ =

∫
e−iPx| ⟨0|OU (0)|P ⟩ |2ρ(P 2)

d4P

(2π)4
, (3)

where |P ⟩ is our unparticle state with 4-momentum Pµ born out of the vacuum by OU . Moreover,
ρ(P 2) is the spectral density. If we try to impose certain constraints on the given matrix element,
then (3) scales with dimension 2dU . However, a certain condition applies for that scaling property
which is in a good phase for our EFT3(and this phase serves an important role here),

| ⟨0|OU (0)|P ⟩ |2ρ(P 2) = AdU θ(P
0)θ(P 2)(P 2)dU−2 (4)

where AdU is a normalized factor to interpolate the massless dU -body phase spaces. The powers of
the last term are based on scale transformation, which is for dimension 2dU . (4) is just the inverse
Fourier transformation of spectral density.

The phase space for n massless particles is given by

An =
16π5/2

(2π)2n
Γ(n+ 1/2)

Γ(n− 1)Γ(2n)
, (5)

and in (4) the phase factor associated with the spectral density is given by (5) with n→ dU

AdU =
16π5/2

(2π)2dU
Γ(dU + 1/2)

Γ(dU − 1)Γ(2dU )
, (6)

and we see that (6) makes a peculiar observation, which has not been seen, that now dU can be
non-integral, hence fractional, number of massless particles as well [1].

The computable cross-section of two massless particles colliding and producing an unparticle
and some other massless particles is given by [7]

dσ(p1, p2 → PU , k1, k2, k3, ...) =
1

2(p1 + p2)2
|M̄|2dΦ (7)

where

dΦ = (2π)4δ(4) [(p1 + p2 − (PU + k1 + k2 + k3 + ...)] Πi

[
2πθ(ki)

0δ(k2i )
d4ki
(2π)4

]
× ω (8)

3The left side of the equation contains an extra (2π)4 which comes from (3) while the PDG has not this extra
factor.
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and

ω = AdU θ(P
0)θ(P 2)(P 2)dU−2 d

4PU
(2π)4

(9)

With the limit dU → 1

lim
dU→1

AdU θ(P
0)θ(P 2)(P 2)dU−2 = 2πθ(P 0

U )δ(P
2
U ), (10)

and this one tells us that under this limit, which is just a unit limit, the unparticle behaves just
like other massless particles with the usual scale invariance.

2 Unparticle Operators and Propagators

A derived virtual propagator for interaction in unparticle physics is too doubting at first, but it
becomes reasonable for such field theories as we proceed. We will consider a scalar operator at
first. An unparticle propagator must be of a scale-invariant kind, which can be derived from our
derived phase factor and spectral equations

∆F (P 2) =
1

2θ

∫
R(M2)dM2

P 2 −M2
− i

1

2
R(P 2)θ(P 2), (11)

where we define the R(M2) as spectral density.

But we want a better idea of propagator in unparticle physics. We have propagators for massless
particles such as γ

∆F (P 2) =
1

P 2
, (12)

and if we impose the scale invariance to the propagator it becomes

∆F (P 2) = −ZdU

1

(P 2)−dU+2

= ZdU (−P
2)dU−2,

(13)

ZdU is mandatory for scale invariance. ZdU will be found soon in this section. For P 2 > 0, we will
get no mathematical cuts, so we will adopt for [−π, π)

(−P 2)dU−2 → (P 2)dU−2e−idUπ (14)

ZdU can be found by comparing the imaginary value of (13) and we found that

ZdU =
AdU

2sin(dUπ)
(15)

hence, our unparticle operator is

∆F (P 2) =
AdU

2sin(dUπ)
(P 2)dU−2e−idUπ (16)
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substituting dU → 1 yields the ZdU as −1 and giving back our γ propagator which was

1

P 2
(17)

That was for a scalar operator OU . What about covariant form operators? Because, the scalar
operator will yield just spin-0 form. However, we can extend this knowledge to spin-1 or perhaps
spin-2. In vacuum, one can consider for spin-1 tensor form

⟨0|Ou
U (x)O

v†
µ (0)|0⟩ = AdU

∫
d4P

(2π)4
e−iPxθ(P 0)θ(P 2)(P 2)dU−2 kµν(P ) (18)

where

kµν(P ) = −gµν +
PµP ν

P 2
(19)

a same formalism that we used for calculating the propagator above can be applied to get the
propagator for spin-1 operators.

∆F (P 2) =
AdU

2sin(dUπ)
(P 2)dU−2e−idUπ kuv(P ) (20)

Just alike for tensor propagators

⟨0|Ouv
U (x)Oησ†

µ (0)|0⟩ = AdU

∫
d4P

(2π)4
e−iPxθ(P 0)θ(P 2)(P 2)dU−2 T uv,ησ(P ) (21)

where

T uv,ησ(P ) =
1

2

[
πuη(P )πvσ(P ) + πuσ(P )πvη(P )− 2

3
πuv(P )πησ(P )

]
(22)

and

∆F (P 2) =
AdU

2sin(dUπ)
(P 2)dU−2e−idUπ T uv,ησ(P ) (23)

We have thought of all unparticle operators as observables. It is also important to note that
Puk

uv(P ) = 0 and PuT
uv,ησ(P ) = 0. The operator Ou

U and Ouv
U are thought to be transverse, and

Ou
U to be traceless.
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2.1 SM Effective Operators

If we incorporate the standard model interactions which satisfy the gauge symmetry, then our scalar
unparticle operator, as in [7], is as follows;

λ0
1

ΛdU−1
U

f̄fOU ,

λ0
1

ΛdU−1
U

f̄ iγ5fOU ,

λ0
1

ΛdU−1
U

f̄γµf(∂µOU )

λ0
1

ΛdU−1
U

GαβG
αβOU

(24)

and for our vector unparticle operator

λ1
1

ΛdU−1
U

f̄γµfO
µ
U

λ1
1

ΛdU−1
U

f̄γµγ5fO
µ
U

(25)

for tensor like unparticle operator, we define it as follows

−1

4
λ2

1

ΛdU
U
ψ̄i (γµDν + γνDµ)ψO

µν
U

λ2
1

ΛdU
U
GµαG

α
νO

µν
U

(26)

where λ1, λ2, λ3 are dimensionless couplings in the form of Ci
OU

ΛdBZ
U /MdSM+dBZ−4

U and i runs from

0 to 2, which are for scalar, vector and tensor like operators, respectively, and Dµ = ∂µ + ig τα

2 W
α
µ

is covariant derivative, denoted f is our standard model fermion, ψ is standard model fermion
doublet or singlet and Gαβ is yang-mills gauge field strength. And we assume that our λi is flavor
blind. These operators and mentioned operators in [5] are very helpful in describing the interesting
phenomenology related to unparticles.

In all these SM operators, the lowest dimension of the SM operator is unparticle coupling to
two Higgs fields, H†HOU , which motivates us to find this coupling at low-energies. Moreover, the
second-lowest is unparticle coupling with two right-handed neutrinos, νcRνROU . Otherwise, every
coupling has exact dimensions with SM fields.

The reason for H†HOU not observing at low-energies is, as given in [5], that when Higgs field
creates a non-zero v.e.v, which in turn is required by gauge symmetry, ⟨H⟩ = v/

√
2. This v.e.v is

required for SM mass production by Higgs field. There is a coupling of unparticle to v.e.v which
is tadpole coupling given by λhhΛ

2−dU
U v2/2. This interaction deforms the scale-invariance property

of unparticles and makes them non-scale invariant, which is then our normal particle physics.
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However, there is an attempt to remove the tadpole, if we include another operator (H†H)2OU .
This would also have a tadpole coupling, which is λ4hΛ

−dU
U . But if we have

λ4hv/2 + λhhΛ
2
U = 0 (27)

then tadpole is removed. And if we ignore the Goldstone boson that would appear, then

λhhΛ
2−dU
U H†HOU + λ4hΛ

−dU
U (H†H)2OU =

1

4
λ4hΛ

−dU
U (2v3h+ 5v2h2 + 4vh3 + h4) (28)

There is an observed mixing between h andOU , which causes the Higgs field’s oscillation intoOU .
This effect then fades away, and the Higgs field gets disappeared. However, the presented mechanism
is our assumption of extra 4 Higgs field coupling to unparticle. This has not been observed too.
We can hope for these observations only if we have sufficient data related to unparticles, which we
have not produced in manners.

The interaction of unparticle with two-right-handed neutrinos is also not observable because
νR is too heavy as a sterile neutrino, which has a predicted mass up to 1 TeV. Hence, the overall
interaction is suppressed for unparticles. However, if νR decays to lighter sterile neutrinos, one may
observe the effect.

3 Standard Model and Unparticles Interaction

We can note that dU is playing an essential role in every process. For example, for limit dU → 1, the
particle looks like a regular particle (as we have a standard limit here). Nevertheless, the critical
feature is that dU can have non-integral values. If we apply this non-integral property, then we
some get good things in particle phenomenology. If we can think of dU being the most significant
possible fractional renormalizable quantity, then there are many things going on and some of them
entirely new. It would be hard to calculate such a process where dU goes to infinity, but we can
guess that it should be related to the N-particles amplitude concept.4.

Now, we explore some simple interactions in the unparticle regime. Our propagators have been
discussed and will be used throughout the overall discussion.

3.1 e+e− collision and monophoton

e+(p1)e
−(p2) → γ(k1) U(PU ) and e+(p1)e

−(p2) → γ(k1) U(PU ) interactions contain monophoton
which can be used to probe the unparticle [7]. The cross section for e+(p1)e

−(p2) → γ(k1) U(PU )
is

4That would be a serious application of this theory.
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Figure 1: Mono-photon energy spectrum for the process e+e− → γU for dU = 1 +
ϵ, 1.2, 1.5, 2 and 3at

√
s = 200GeV . We have imposed |cosθγ | < 0.95, reproduced from [6].

dσ =
1

2s
|M̄|2 AdU

16π3Λ2
U

(
P 2
U

Λ2
U

)dU−2

EγdEγdω (29)

where

|M̄|2 = 2e2Q2
eλ

2
1

u2 + t2 + 2sP 2
U

ut
(30)

and P 2
U is related to Eγ , by recoil mass equation

P 2
U = s− 2

√
sEγ (31)

The monophoton energy for different dU will provide insightful data. However, there have been
still going searches of monophoton [9]. Using the monophoton data from here and comparing it
with dark-matter researches (or any) will help in the probe. The energy spectrum for mono-photon
is in fig. (1).

3.2 Mono-Z Production

We also have a mono Z situation here in f(p)f̄(p′) → Z(k)U(PU ). For this interaction we have

dσ =
1

2s
|M̄|2

√
E2

z −M2
ZAdU

16π3Λ2
U

(
P 2
U

Λ2
U

)dU−2

θ(P 0
U )θ(P

2
U ) dEZ dΩZ (32)

where |M̄|2 is spin and color averaged and the recoil mass relation is

P 2
U = s+M2

Z − 2
√
sEZ (33)
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where

MZ ≤ EZ ≤ Emax
Z =

s+M2
Z

2
√
s

. (34)

We define s + t + u = M2
Z + P 2

U , where s, t, u are Mandelstem variables. And same here when
dU → 1, our unparticle acts as a regular SM scalar. Furthermore, the cross-sections also become a
usual case of the standard model. However, at the non-integral limit, this phenomenology is very
superior to just a standard process.

3.3 Z → ffU

The decay width of the process Z → ffU for spin-1 unparticle is given by

dΓ(Z → ff + U)
dx1dx2dξ3

= Γ(Z → ff + U) λ
2
1

8π3
g(1− x1, 1− x2, ξ)

M2
Z

Λ2
U

(
P 2
U

Λ2
U

)dU−2

(35)

where ξ = P 2
U/M

2
U and x1,2 = 2Ef,f/MZ

is the energy fractions of the fermions involved. The

function g(1− x1, 1− x2, ξ) is defined as

g(1− x1, 1− x2, ξ) =
1

2

(
x

y
+
y

x

)
+

(1 + z2)

xy
− z

2

(
1

x2
+

1

y2

)
− (1 + z)

(
1

x
+

1

y

)
, (36)

and the domain of the (35) is given by 0 < ξ < 1, 0 < x1 < 1 − ξ and 1 − x1 − ξ < x2 <
(1 − x1 − ξ)/(1 − x1). As plotted in [6, 7], the plot depends on the scale dimension of unparticle
operator. It is easy to see that for dU → 1, this becomes γ∗ → qqg.

3.4 Mono-Jet and Hadronic Collisions

Partonic led hadronic collision are also important for unparticles phenomenology. It was pointed
in the Georgi’s paper [1].

gg → gU , qq → gU (37)

qg → qU , qg → qU (38)

These are partonic subprocesses. To consider these sub-processes involving both the quark and
gluon, we consider our vector unparticle operator Oµ

U . Meanwhile, for gluon-gluon sub-processes,
we consider the scalar operator OU [6].

The cross-section for the partonic process is

d2σ̂

dt̂dP 2
U
=

1

16πŝ2
|M̄|2 1

2π
AdU

(
P 2
U

Λ2
U

)dU−2
1

Λ2
U

(39)

with differing |M̄|2 for different processes [7]
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Figure 2: Cross sections for mono-photon plus unparticle production at the e+e− collider with√
s = 207 GeV for dU = 1.4, 1, 6, 1.8 and 2. The horizontal line of 0.2 pb is the 95% C.L. upper

limit, reproduced from [7].

|M̄|2(gg → gU) = 1536παs

4 · 8 · 8
λ2o(P

2
U )

4 + ŝ4 + t̂4 + û4,

|M̄|2(qq̄ → gU) = 8

9
g2sλ

2
1

(t̂− PU )
2 + (û− PU )

2

t̂û
,

|M̄|2(qg → qU) = −1

3
g2sλ

2
1

(t̂− PU )
2 + (ŝ− PU )

2

t̂ŝ
.

(40)

These matrix elements, squared, for process written to right also provide a similar form for
q̄g → q̄U . Meanwhile, the first process, which is gg → gU with λ2o, will have extra-dimensional
regularization and suppression because of dimensional counting. In these partonic subprocesses, we
say ŝ ∼ x1x2s with s being the center of mass squared of hadrons colliding and x1x2 is momentum
parton function. For ΛU = 1TeV and λ0λ1 = 1, there is an analysis of this mono-jet at LHC.
However, the phase factor AdU seems to not function at the partonic hadron colliding process.
Furthermore, this mono-jet also does not tell us more about hadronic contribution for unparticle
detection, so we cannot be sure to find unparticle, one of the cause is unknown ŝ in these equations,
at LHC5.

3.5 Constraints on AdU for mono-photon production

Here, we will study about the constraints by LEP by inserting unparticle to their observed missing
energy. At LEP2 [10–13], the Standard Model predicts that events with one (or more) photons
with invisible particles can be found by the process of e+e− → X + γ. L3 found with 95% C.L

5For spin-2 unparticle, the theory should be same and hence should not alter our perception, at least here.
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that upper bound on σ(e+e− → X + γ) ≃ 0.2pb under the cut of Eγ > 5GeV and cosθγ < 0.97 at√
s = 207 GeV and we will work on it. [7] presents a study of mono-photon with unparticle with

the same cuts defined with
√
s = 207 GeV versus the unparticle scale ΛU with defined λ1 = 1,

which is Fig 2.

A similar table can also be put down for ΛU for different dU for LEP2 with 95% C.L.

dU ΛU (TeV scale)

2.0 1.35
1.8 4
1.6 23
1.4 660

A simple observation yields to us that for fractional numbers of unparticles, we need higher
energies. We will not discuss more the phenomenological processes in the unparticle interaction,
and it has been studied in detail [7]. And, the process e+e− → µ+µ− in [2].

4 Conclusion

What we have so far discussed are theoretical cross-sections of our probable processes. In the
first section, we introduced “Unparticle Physics” as a field theory with scale invariance, which
arises from a weakly coupled Bank-Zaks field. Unparticle operators are studied. We find out that
unparticles can exist in non-integral numbers and that what sets the unparticle to be different from
any normal field theory. Then, we studied other standard model processes and found them either
suppressed or at high energies.

We also see that unparticles can play an essential role in standard model processes, as they can
act as missing energies in our standard model anomalies. We hope to find them in our colliders
someday. And if we do that, it will be another milestone for particle physics. A lot is going
on [14, 15] in unparticle physics that hints at it to be an exceptional field theory. In particular,
recently introduced term “Unnuclear Physics” [14] is another promise of non-relativistic unparticle
physics.

I want to thank Howard Georgi for pointing important papers. I am also indebted to Tzu-
Chiang Yuan for his comments on an earlier version.
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