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Abstract

In the following paper, we discuss the idea of field theory and QFTs. We point out some
important things about string theory, including ghosts, conformal symmetry, and string theory
itself. Random matrices are discussed as well. We have tried to make it as subtle and simple as
possible.
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1 Introduction and Discussion

The idea of field theories is a holistic approach that has its roots in many physics, to name two;
high energy physics [1], and condensed matter physics [2]. However, the latter one uses a slightly
different field theory strategy compared to high energy physics, which we will discuss somewhere
below.1 One striking and most important similarity between Quantum Field Theory (QFT) and
Statistical Field Theory (SFT) is Renormalization Group (see Wilson’s [3]). Furthermore, when
we have a H, a Hilbert space, we can try to generalize the properties of it using ordinary quantum
mechanics briefly. But to learn about the fields, which is a broader perspective to understand the
physics of a particular regime, we need to consider the theory which will allude us to talk about
the generalization of free and interacting models of that regime. So, that is why we speak of field
theory in general. If we try to adopt Weinberg view of QFTs [4], the definition of QFT can be
explained using three basic principles, which are also the necessity of any theory to be called QFT.
These are an S-matrix, Lorentz invariance, and cluster decomposition.

Generally, a field theory is not quantized until it is made because roughly any field theory
is an infant classical theory.2 Some classical field theories, for instance, Einstein’s Gravity, face
inconsistencies and constraints when we try to quantize them using regular quantization (however,
there are some ways to quantize gravity, for instance, in string theory [5–8] which is a question
and part of a much larger query of quantum gravity).3 Some field theories are easily quantized;
an elementary example is classical scalar field theory, which we will denote as φ. This scalar field
theory for some time will entertain us. In what follows, φ is a free field, excluded from any kind of
external perturbation and interactions, except for one example it will be otherwise.

Any field theory, take Newton’s field, we have some equations of motion describing the field. For
a classical version of field theory we can write those equations using “Hamilton Mechanics”. And
for a quantum version, we use “Lagrangian Mechanics” (or action). Both are extremely powerful
tools. Note that Hamiltonian dynamics are also used in quantum field theory. So, how can we
write a linear classical theory of φ with some mass “m”? For such, we write the Lagrangian (or
action)

L = −1

2

(
−ηµν∂µ∂νφ+m2φ2

)
(1.1)

1A third, but mathematical, one is algebraic field theory (or axiomatic field theory) which deals with operator
algebras of field theory. We will see few example of them in this paper.

2This statement is party wrong as there are many field theories which has quantum symmetries as well, even if
their action is classical.

3We do not wish to particularly talk about the issue of quantization of gravity in this paper.
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where we work in (+ − −−) signature4, ∂µ = ∂
∂µ and ∂2 = ∂µ∂

µ. It is explicitly seen that in
Lagrangian (1.1) that it is a relativistic theory. We can now write the classical Klein-Gordon
equation5 related to φ using “Euler-Lagrange Equation”

ηµν∂µ∂ν +m2φ = 0. (1.2)

The Euler-Lagrange equation is a differential equation (much like the Schrödinger equation but
more powerful in the sense of field theory machinery), we write them naively as

∂L
∂fi

− d

dx

(
∂L
∂f ′i

)
= 0, (1.3)

where f is some function6. We solve the differential equation (1.3), and then we get an equation
which, sometimes, is sufficient to know much about the field. Eq. (1.2) is a classical solution,
and we want to know the quantum properties of the φ. There where the “quantization” comes.
Quantizing fields go back to electrodynamics, see [9]. A very successful model of quantization of
classical field, at that time, was only “Quantum Electrodynamics” (QED). Quantization can be
thought of in mainly two ways: Canonical Quantization and Path Integral Quantization. Both
are important ways of quantization. For instance, finding Instantons in quantum theories can be
done using path integral approaches, and most of the fields can be easily quantized using canonical
variable and oscillators setup. String models, a very proclaimed theory for quantum gravity, can
also be quantized in both ways7.

The outline of the paper is as follows; in the ongoing section 1, we are discussing and mainly
introducing various quantum field theories methods, which include Lagrangian, quantization, topo-
logical quantum field theories, statistical fields theories methods, Feynman methods, and green
functions. In section 2, we will discuss the symmetries of nature and their basic properties, which
include current, large N , generators, and so on. We will briefly comment on Yang-Mills and duality
in the presence of Large N . In the subsection 2.1, we will discuss the gauge theory and what we
mean by gauging a quantum field theory and what ghosts are. We will also briefly discuss the two
kinds of ghosts, namely covariant- and non-covariant - ghosts. In subsection 2.2, we will discuss
the invariance and group theory.

In section 3, we will talk about string theory in nutshell. Mainly we will discuss its interpreta-
tions and its usefulness using light coordinates. In the succeeding subsections of the same section,
we will try to discuss Virasoro algebra and conformal algebra (subsection 3.1), Ghosts and BRST
quantization (subsection 3.2), and few other basics (subsection 3.3). In section 4, we will outline
few basic properties and definitions in Random Matrix Theory. Finally, in the in Appendix A,
we will discuss few geometries of Anti-de Sitter space.

To establish a canonical quantization of φ, we have some procedure. (We will not mention all
of them here.) An important one is to write the commutation relations for x and p for the field.

4Also c = ℏ = 1, which are natural units in QFT.
5This is a classical solution (1.2), however, we can say it is a Klein-Gordon equation. But not a wave equation.

For that, we need to quantize φ and then use Euler-Lagrange equation.
6In most of the quantum cases, the function is of canonical variables.
7Path integral approach will be replaced by Polyakov integral, a good discussion can be found in [10].
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Then find the oscillators of the field, after establishing a vacuum |ϕ; 0⟩. These oscillators will excite
the vacuum to first excited state or it can oscillate the excited state to lower state (or vacuum for

some examples). Conventionally, they are an and a†n, where n is some integer. They are also called
annihilation operator and creation operator respectively. Then we do some ordering, and our L is
ready. For φ, when quantized, the action is given in terms of8

L = −1

2

(
−∂2φ2 + (mφ)2

)
, (1.4)

and given the Euler-Lagrange (1.3), we can write;

∂2φ+m2φ = 0, (1.5)

which is a simple linear equation and shows a Schrödinger equation for wave function φ. For a set
of scalar fields, we can write the Lagrangian for φ as

L = −1

2

N∑
i

(
∂2φ2

i +m2φ2
i

)
− 1

8
λ

(
N∑
i

φi

)2

, (1.6)

which of course is interacting field and in (1.6) λ is coupling.

If we dig more to group theory, we find that under the large N → ∞ of the group, interesting
things happen, general discussions by ’t Hooft can be found at [13, 14]. (Interestingly, SU(N),
which represent QCD at N = 3, when formulated at N → ∞ becomes a free string theory with
coupling 1/N [15]. Historically, the theory of string theory originates from discussion of hadrons
and mesons themselves [8].)

That is a preliminary definition of fields and quantization of which main motive is to describe
the states-oscillations.

A rather comprehensive approach would be topologically [16–18]. The most exciting application
of them is “Chern-Simons” Theory - a topologically invariant theory (or equivalently metric invari-
ant) - first taken to general QFTs as a topological solution by Donaldson [19,20], and Witten [21]
using the works on knot polynomials. In a topological quantum field theory (TQFT), we rather
want to know the geometries of the fields, and we analyze them in terms of rigorous topological
mathematics. Generally, TQFT is an extension of topological operators of higher forms. Genus is
an important property of TQFT when we study them. Genus, denoted by g, is a topological form
of describing the, roughly speaking, number of holes in geometry9. One can describe the expansion
of some fields using genus expansion (where the genus is for closed surfaces). Writing these genus
expansions is valid for any field theory. However, the most interesting case is of ’t Hooft limit
(N → ∞), as an equation is formed with Euler characteristics, which resembles the equation for
genus for closed-oriented surfaces at the instance.

8This scalar field theory have scale invariance and conformal invariance [11]. A very typical type of scalar invariance
in QFT is studied in [12]. One can also speak that when beta functions, B(g) = ∂g/∂log(µ), the field theory is scale
invariant.

9Sphere has g = 0, whereas torus has g = 1, see figure 1.1.
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Figure 1.1: A (2D) torus with g = 1.

A Short Review of Topological Quantum Field Theory : While a lot of the ideas in TQFT relate
to the ordinary quantum field theory. Instead, we will try to define the usual definition of TQFT
independently, following Segal’s definition [17,22].

There are many other things in TQFT, a somewhat different approach from general QFT [21].
For example, interpretation of differential forms, Jones polynomial, and Langlands Program [23]. Or
the interpretation of Chern-Simons theories in Quantum Hall Effect [24]. (Just as we have AdS/CFT
correspondence, we also have a correspondence between Chern-Simons theory and WZW [21, 25]
on the boundary, which is a correspondence between topological field theory and non-topological
field theory.) One also feels a proper geometrical (and categorical) spacetime in such theories.

(Another important topic would be closed curve solution to N holes genus in Moduli spaces,
extensively studied by Eskin and Mirzakhani [26]. And studying the shapes of that genus is partly
defined in TQFTs.)

A somewhat distinct approach would be statistical field theory. But we only study SFT to
understand the statistical significance of such fields. And there are many similarities between
QFTs and SFTs, sometimes it can be hard to distinguish between the two. In SFT, we have
partition function for some Hamiltonian H

Z =
∑
n

e−βEn , (1.7)

or equivalently as

Z = tr(e−βĤ). (1.8)

In QFT, one also has such a partition function with a slightly different definition. In SFT, all
you want to know is the partition functions, and then you can compute many things with it. In
QFT, partition functions are generally used to understand the Green functions, and other Feynman
approaches. Moreover, Feynman’s methods are the essence of any field theory. This includes; path
integrals [27], Feynman diagrams, Amplitudes, and many more. A path integral (D[x], where X
are paths) is basically an integration over all possible paths, same as partition function (1.7) is
a summation over possible energies. And in QFT, a partition function is simply a generating
functional (with some source J coupled to the field) that generates all correlation functions (We
should also mention here that Lagrangian is not only the conventional approach to study QFTs,
one can also study it by listing all the correlations functions. And there are still more methods.).
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So, we reach

Z[J ] =

∫
D[x]φe(iS[φ]+

∫
d4xJ(x)φ(x)) (1.9)

where S is action of the field. When J = 0, that means no source energy coupled to field, then
Z[J = 0]

Z[J = 0] =

∫
D[x]φeiS[φ], (1.10)

where (1.9) is of course showing the coupling of J with the field in dimensions D = 4.

Green functions are propagators of the theory. Let us say that φ is locally and internally
interacting. And when φ goes to y from x, there is some propagator making it possible, we will
say it is Gx,y. Before we make remarks on that, we need to discuss the Feynman calculus of our
field; the field in our case is φ. Actually, we should not be writing the calculus first and then learn
the field, and it should have been reversed. However, we know the action (1.6), and we can know
the basic propagators of scalar field theory without deriving them here. There are some Feynman
rules for every field. From our quantization process, we can derive φ in terms of oscillating modes

φ(x) =
1

(2π)3/2

∫
d3p

2En

(
ane

−ipx + a†ne
ipx
)
, (1.11)

where we integrate over momentum. It is important to note that we have localized the φ as a
function of x.

We can draw the Feynman diagrams for (1.11) and S-matrix for interactions. It is evident
by name that the excitations of φ are scalar particles. In an interacting theory of φ, J is only
dynamical and do not self-interact. Let suppose αφ and βφ are two scalar particles of free φ. We
want to know things about the scattering αφβφ → αφβφ. Feynman diagram of this scattering on
tree level is figure 1.2. Where two particles come and interact and then scatter away. Every line
in the figure is the history of that particle. (In the whole process, γφ is some mediator which we
do not show here. IT is not a photon, and the wiggling line is just for convenience. The photon
would be present in interactions involving QED.) These mediators play the role of bosons. To
write the “Feynman Rules”, which is distinct for different fields and configurations, we report the
amplitude of the scattering. In order to note that, we need to know the amplitudes for vertices,
propagators, and particles themselves. In higher-order, we will delightfully need loops amplitude
also. We suspect that real nature has all the higher-order loops for interactions. For brevity, we
generally do not include higher-order terms. However, one can start with real nature and integrate
the higher orders (or higher mass orders) using Renormalization.

Once we are done with writing Feynman rules, we know the theory much well. Nevertheless,
still, we want to know the S-matrix associated with figure 1.2. We write it as

Smat = ⟨AOut|AIn⟩ , (1.12)

where A is the amplitude. In the discussion of the S-matrix, we get to know the amplitude change
in the process. Moreover, once we know S-matrix (or matrices), we get new pathways to understand
more about those interactions.
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Figure 1.2: A Feynman diagram among many, a tree level 2 → 2, for αφβφ → αφβφ. It is important
to note that this is not the only way to draw diagrams, we can map this diagram (conformally) to
some disk or sphere and work on those diagrams also.

Of course, φ is not a natural field that excites matter, QCD is one of this kind, but φ can be
a good starting toy model (One example of the scalar particle is Higgs Boson.) in the process of
making the Standard Model (SM) (see, for instance, [28]), which is the most influential field theory
that comes from fields and plays with things related charge, color, global symmetries, discrete
symmetries and so on.

2 Symmetries and Groups

Symmetries of the nature, though they are not necessary to be “natural”, are a delightful feature
of QFTs (or physics in general). What we intend to study in symmetries is reflected in the study
of the field’s internal working and much more. We will mostly talk about QFTs symmetries in
this section. The most naive way to understand symmetry lies in the application of conservation,
as two words are conjugation to each other. In other words - conserved charges are generators
of symmetry. For instance, Noether’s Current is a conserved quantity and, roughly speaking, it
corresponds to a continuous symmetry.

Figure 2.1: Showing chiral symmetry here. The curve on both sides, let us suppose it is a particle,
should be the same. A mirror will not change the particle to a new kind; it will still be the same,
i.e., laws should be conserved.

Generally, every QFT has some generators. These generators, in terms of group theory, can
generate other components of that group. Group theory is another interesting mathematics. These
groups are supposed to be a fundamental (or even composite) description of the field. If we speak
straightforwardly, groups are another essence of fields. Consider a system with some matrix that
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has determinant 1, which - suppose - is a unitary system. For such system, we can associate a group
called SU(N). Every group has its algebra and representations. For instance, SU(N) has N2 − 1
number of elements. QCD, which is a theory of SU(3), has eight elements, which are actually the
colors of the theory.

If we talk about large N , suppose N → ∞ - of some part we discussed in section 1 - then good
things happen and system behaves a little - delightfully - peculiar. As we mentioned that SU(N)
for large N behaves like a free string theory, a complete review can be found in [15,29]. Moreover,
we get the perturbation expansion in terms of coupling 1/N [30]. This is not only interesting in
SU(N) but groups like U(N), SO(N) also have interesting points to make when N → ∞. This large
N is an important contribution for high energy physics (and condensed matter physics), though,
despite the large degrees of freedom which it brings in. Recently, we have seen a lot of ’t Hooft
limit applications.

In modern-day physics, there are many dualities of concern. String/Gauge duality is also
interesting. However, major developments have already been made in past years. For an interesting
read of String/Gauge Duality see [15,31]. This duality is only of importance whenN is large enough,
identified as ’t Hooft limit [13], as only Large Ngauge theories are said to be String theories. The
explanation of the cause is, of course, in detail.

Now, we will briefly comment on “Linear Algebra”, which is another well mathematical algebraic
topic and has preliminary roots in quantum mechanics as well. This is a well-studied subject and
has its implication in various works of QFTs. There are many things in Linear Algebra, two of
the important are eigenvalue and diagonalization. In studies of QFTs (or even basic Quantum
Mechanics), this simple algebra is well defined and used for every bread and butter making. To
mention one basic concept called commutation, a commutator between two generators of the group
is the subject of that group and forms an algebra for the same. In general, a commutator is defined
as

[A,B] = AB −BA. (2.1)

Elements of the abelian group are commutative, i.e a and b are abelian group elements then

ab− ba = 0 (2.2)

It is otherwise for non-abelian group elements, i.e., they do not commute. The latter (non-abelian
group) is a study theme for Yang-Mills theory [32]. Yang-Mills (YM) theory has various implications
in particle physics (both theory and phenomenology) of gauge10 groups [33] - a condensed matter
review is [34]. A supersymmetric extension for YM is Super Yang-Mills (SYM)11. Our QCD, an
asymptotically free theory, is a Yang-Mills theory. Different supercharges (N ) produce different
SYM, the most interesting of them is N = 4 SYM, which is a perfect model to study, as we will
see, the correspondence between a string theory and gauge theory. The essence of YM is gauge
invariance, which we discuss next.

10Discussed in next section.
11Some reviews can be found in [35] with few applications.
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2.1 Background on Gauge Theory

We will now discuss, briefly, the basics of the gauge theory. However, a detailed discussion can be
found in [36]. We will mostly follow notations of [37]. Gauge theory is a theory of gauge fields and
their related transformation. A “gauge” is just a simple choice. Furthermore, a gauge field is a
vector field with continuous parameters defined by the gauge group; for example, a YM field with
SU(N) and a gauge field Aµ is a gauge theory. When we write some gauge for a theory, we are
building the theory in those gauge properties. Let us suppose we have a field Φ (of N copies of
φ) which transforms according to a Lie group - Lie groups are dependent on a set of continuous
parameters - and suppose the group is a compact one. That group, G, will have some generators.
If the transformation from G is carried out locally i.e., it depends on space-time variables, and then
we have a local gauge group. If it does not depend, then we have a global gauge group. For the
local gauge group, we define the gauge field and fix the overall theory. So if for the field Φ and
group G we have kα as infinitesimal transformation function and g is an element of group G with
generators a, then transformation is given by

g = g0 + kαaα, (2.3)

where kα is locally dependent. As we have said above that if kα is locally dependent, then we need
to introduce gauge field Aµ which transforms like

Aµ(x) → gAµ(x) = g(x)Aµg
−1(x) + [∂µg(x)] g

−1(x), (2.4)

and that is how a gauge theory is defined. We can now fix the action related to Φ with inserting
this gauge field into it. Eventually, we will get a gauge theory with gauge invariance in it. As we
mentioned, if a theory is gauge invariant, then it has gauge freedoms which help to study the model
effectively (and write helpful caveats).

There are two classes of gauge theory (at least in terms of consistencies and their “ghosts” or
“ghosts free” nature) - covariant and non-covariant gauge theory. Both are famous and infamous
for their own reasons, exploited in [37]. Actually, covariant gauges have a history with ghosts.
Technically, a ghost particle (or state) is an unphysical particle (or state) which are sometimes
necessary to eliminate the ill-amplitude that arises from closed loops. However, there are bad
ghosts also, which contributes to the negative energy spectrum12. Good ghosts include the famous
Fadeev-Popov ghosts and bad ghosts would be Landau ghosts. A goldstone state can also be
considered a ghost.

The table 1 and 2 in [37] principally shows the covariant and non-covariant gauges and follows
the discussion, in same [37], about those gauges choices with faithful explanations, that we will not
do about covariant and non-covariant gauges in this paper, except that light-cone gauge in a later
section. However, in what follows, the invariant statement is that covariant gauges have ghosts
while non-covariant have not.

12Not the hole-theory way. They contribute to negative kinetic energies. Also, note the distinction between a
tachyon and a ghost; the former has mass-squared as negative. Tachyons generally appear in the ground state of
bosonic string theory and are unstable.

9



2.2 Invariance and Groups

This section will touch on the invariance principle and a little bit of group theory in this section.
In relativistic physics, Lorentz invariance prevails the whole discussion of symmetry, at least in GR
and most of the QFT. In a basic sense, Lorentz invariance preserves physics through space-time.
We understand Lorentz invariance as a necessity for reality, as it appears. In general relativity,
Lorentz transformation is a change of frames (or perhaps indices). If the transformation does not
alter the physics of the previous frame to the new frame, we call the transformation “invariant”.

As we said that every invariance is associated with a group algebra. Lorentz group (in D = 4),
a group for Lorentz transformations, is SO(1, 3). Furthermore, the covering group for same is given
by a special linear group13 SL(2, C). We will mention the generators of the Lorentz group as Jµν0.
Lorentz symmetry is global symmetry. Roughly speaking, if this group acts and leaves action of
the group invariant, then it poses no inconsistencies in Lorentz invariance for that particular field
theory. A Lorentz invariant theory is no threat to absurdity. For instance, every SM QFTs are
Lorentz invariant (and Superstring theory (a theory for supersymmetric strings) is also a critical
theory at D = 10 as it is Lorentz invariant in only those critical dimensions). We frequently see
the high importance of Lorentz invariance (or extended Poincare invariance) in physics. There are
more groups of reliance, such as Poincare group and Conformal group [38–40]. The latter is a great
deal and is currently involved in breakthrough achievements and developments.

Let us see some of the properties of the transformation of a manifold M. Suppose M is a
regular manifold. For a point ϵ on M, translation invariance holds that for transformation

ϵ→ ϵ+ x, (2.5)

that both points “ϵ and ϵ + x” have the same laws of M. If we include Lorentz boosts and maps
together with these translations, we call it Poincare invariance. Furthermore, Lorentz invariance is
a symmetry holding that the change of frames (and translations too in Poincare invariance) do not
change the defined laws. In the covariant description of relativity, these Lorentz transformations
were first physically defined by Einstein. For a general Lorentz transformation, we write

x→ x′ = Λx, (2.6)

where Λ is a matrix of all Lorentz transformations. Moreover, if this transformation preserves the
physics, then (2.6) is Lorentz invariant (or Poincare invariant if translation included). As usual,
these invariances are connected with symmetries. And these all (translation, Lorentz, and Poincare)
have their own groups and representations.

In particle physics, we deal with many symmetries; some are broken, and some remain unbroken.
The Famous of them is CPT symmetry, and they stand for charge conjugation, parity, and time
reversal (all three are discrete symmetries). If we do CPT transformation on a particle e (not
necessarily electron), then e now becomes opposite charged, with opposite parity and with the
opposite timeline in the Feynman diagram. We can, of course, take only of the three at one time
as well. Among CPT, when they are individually performing, two have been observed to be broken

13SL(2,Z) is a different group which is for modular transformation. Modular transformations are important in
string theory from the world-sheet point of view.
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as symmetry; for instance, parity invariance has been observed as broken in weak interactions.
There is also the special chiral symmetry in SM which is one of the key features in Electro-Weak
theories (a SU(2) × U(1)) [41, 42]. There are not only these cases of broken symmetry. Studies
around the baryon symmetry and asymmetry have been done, and it asserts why there is an
unequal distribution of baryons and anti-baryons in the universe. That is why particle physics
phenomenology keeps an eye on every symmetry, either broken or not. In the above discussion, we
already realized that symmetries and group theory are linked strongly.

As we are inter-changeably discussing invariance and group, we can briefly talk about some
groups. It is well note fact that gauge theories describe every SM theory. One such example
is U(1), which is the group for Electromagnetic theory. This is a unitary theory with N = 1.
Furthermore, SO(2) describes weak theories with N = 2 in three dimensions, and SU(3), as we
have described, represents the strong theories of QCD with 8 elements with N = 3. Nevertheless,
the discussion is not limited to SM theories, and we may want to build some good-old theories with
Sp(p, q), SL(2, Z), and so on. Indeed, we have made-models, and we can instantly think of string
theory, particularly those various types of world-sheet group theory. It has also been made possible
only because of the mathematical intuitions, which are plenty in quantum gravity, such as string
theory.

3 String-y Theory

Now we turn to a proclaimed quantized theory in which gravity is inevitable. We said in section
1, gravity can not be quantized using “usual” quantization processes. That is a failure of quantum
field theory. However, in large part, it has been quantized using string theory (for a general
introduction, we refer to [43, 44]). The string theory’s consistencies with Lorentz algebra are only
available in critical dimensions and a number called “a”. Nevertheless, it is worth mentioning here
that non-critical strings theories are also of good importance. In what follows, we will only focus
on critical strings theories. For brevity, we mostly follow notations from [43].

Gauges were mentioned in subsection 2.1, of which we said that sometimes non-covariant gauges
can help us to eradicate the ghosts. Light-Cone gauge is one of those kinds. String theory is
comfortable in light cones. For Xµ, we introduce the light-cone coordinates as

Xµ =
1

2
(X0 ±XD−1), (3.1)

where D are spacetime dimensions. Eqn. (3.1) is stating that two coordinates (X0 and XD−1)
have been selected out in a non-covariant way. The remaining coordinates are called transverse
coordinates Xi, i = 1, . . . , D − 1. For any two vectors V and W, we write inner product as

V ·W = V iW i − V +W− − V −W+. (3.2)

Action: String theory has its origination from Dual-Models [45] studies on the Regge behavior
of hadrons and mesons. What was believed to be a theory of QCD was actually a string’s theory.
Later, QCD was studied as a YM SU(3) theory [46].
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(a)
(b)

Figure 3.1: (a) Open strings end on D-brane and (b) Closed strings has a source from D-brane.

A model called “Veneziano Model” exploited the idea of duality between the s-channel and t-
channel [47], later Veneziano theory became the algebra for open strings (strings with end points).
To go from ordinary particle physics to string theory, we replace the known worldline through
something strings sweep called worldsheet. And strings are one dimensional structures, ending or
originating from D-branes14. D-branes are also solitons in string theory. To some extent methods
of particle physics is applicable in string theory, as so that we can now construct an action for
strings in an analogy. An action, known as Nambu-Goto action, is

S = −T
∫
dn+1σ

√
g (3.3)

where σ is some representation and g is metric. But a more developed version of Nambu-Goto
action is called “Polyakov action”, which is written as

S = −T
2

∫
dn+1σ

√
hhαβ(σ)gµν(X)∂αX

µ∂βX
ν , (3.4)

where T is string tension and is written T = (2πα′)−1 where α′ is Regge slope parameter. hαβ is
yet another metric, hαβ is inverse of hαβ and h is determinant of hαβ. hαβ is the geometry of n+1
manifold and gµν (an induced metric) is the geometry of D-dimensional space-time. Xµ are maps
from world-line, world-sheet to physical space-time. We have a constraint here that D ≥ n + 1.
We could have also derived the (3.4) using an arbitrary parameter e(τ) and then writing the string
tension, but our thoughts are linear.

σ is there for reparametrization. (3.4) parts are invariant volume elements. hαβ is also Weyl
invariant, a necessity for eliminating conformal ghosts, which is possible in n = 1 as d2σ corresponds
to some 2D CFT. Weyl scaling is

hαβ → Λ(σ)hαβ. (3.5)

(We should also mention that string theory has two forms of excitations; open and closed
strings. In fig 3.1, it has been drawn. They have their own properties (however, lots of overlaps)
and algebras.)

14Open strings boundary end (Drichlet Boundary Condition is hence satisfied) on D-branes. D-brane is a source
for closed strings, see figure 3.1.
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3.1 Conformal Group and Virasoro Algebra

Conformal fields theories are another essence of string theory. In fact, we can consider 2D CFT
a straightforward model to show our string theory. Virasoro algebra is an algebra for conformal
theories developed by Virasoro [48]. There is also intricate algebra like Witt algebra. We should
first understand conformal algebra to a necessary extent. A conformal group is a simple group
including Poincare and scale-invariance group. The most simple scale-invariant theory, other than
the scalar field, is YM in D = 4. Scale-invariant theories are - by default - believed to be conformal
invariant.

Conformal group is a group of transformations which preserves the metric structure under some
arbitrary scaling, it also includes the inverse transformation. This can be written as

hαβ → Ω2hαβ, (3.6)

and general scale transformation as
xµ → λxµ, (3.7)

and special conformal transformation, which is a fractional transformation, is

xµ → xµ + aµx2

1 + 2xνaν + a2x2
. (3.8)

We can denote the generators for these transformations as follow; Pµ for translations, Jµν for Lorentz
transformation, D for scaling transformation, and Kµν for special conformal transformations15.
They obey the conformal algebra

[Jµν , Pρ] = −i (ηµρPν − ηνρPµ) ; [Jµν ,Kρ] = −i (ηµρKν − ηνρKµ)

[Jµν , Jρσ] = −iηµρJνσ ± permutations ; [Jµν , D] = 0; [D,Kµ] = iKµ;

[D,Pµ] = −iPµ; [Pµ,Kν ] = 2iJµν − 2iηµνD,

(3.9)

and we can write the action of the algebra on a state as [49]

[Pµ,Φ(x)] = i∂µΦ(x), (3.10)

[Jµν ,Φ(x)] = [i(xµ∂ν − xν∂µ) + Σµν ] Φ(x), (3.11)

[D,Φ(x)] = i(−∆+ xµ∂µ)Φ(x), (3.12)

[Kµ,Φ(x)] =
[
i
(
x2∂µ − 2xµx

ν∂ν + 2xµ∆
)
− 2xνΣµν

]
Φ(x), (3.13)

where ∆ (scaling dimension) and Σµν are generators of little groups [49]. We can also mention that
Weyl invariance is isomorphic to group SO(2, d), something similar to SO(1, 3) Lorentz group (see
2.2). Generators for SO(2, d) will be identical to Jµν .

After this basic discussion about conformal algebra, we turn to its most (and famous) important
application in string theory, namely “Virasoro Algebra” (see section 2 in [43]). It is an extension
of Witt algebra. For Lm generator16 of Virasoro algebra, we write

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (3.14)

15We use notations from [15] expect Jµν .
16They are simply the fourier modes of energy-momentum tensor, that later will produce “Virasoro Constraint”.
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[Lm, Ln]P.B = i(m− n)Lm+n (3.15)

where c is central charge and P.B means Poisson bracket. While (3.14) is quantum, (3.15) is purely
classical. Central charge is an operator with commute with all other operators in the group i.e.
[Ln, c] = 0. For the unitary representation of the algebra, we write (see [50])

L†
n = L−n. (3.16)

One can write Lm in fourier modes (in terms of oscillators that are present in any quantum theory)

Lm =
1

2

∞∑
−∞

αm−n · αn, (3.17)

(similar for L†
m) with an exception for L0

L0 =
1

2
α2
0 +

∞∑
n=1

α−n · αn, (3.18)

because when m = 0, both oscillators (αm−n, αn) commute for L0. Now this L0 gives a condition
to be cared for physical states

(L0 − a) |χ⟩ = 0, (3.19)

where a is a very critical number for criticality of string theory and χ is a physical state. When
a = 1 string theory produces smooth states.

An open string with mass squared M2 = −pµpµ can be written with the (3.18)

M2 = −2a+ 2

∞∑
n=1

α−n · αn, (3.20)

where one can see that −2a is the mass squared of ground state. In (3.20) the value of α0 is 1/2.
Similarly for closed strings17

M2 = −8a+ 8
∞∑
n=1

α−n · αn = −8a+ 8
∞∑
n=1

α†
−n · α†

n. (3.21)

The fact that (3.21) is 4 times the (3.20) is another way of saying that g2 = κ where g is coupling
constant for open strings and κ for closed strings. One final basic takeaway from Virasoro algebra
is that for a physical state χ

Lm |χ⟩ = 0, m > 0, (3.22)

and this is a necessary condition, along with (3.19).

An efficient application of Virasoro algebra is DDF formalism. DDF stands for Di Vecchia, Del
Giudice, Fubini [51], who were involved in studying this formalism. DDF formalism includes only
physical states, which help us to stand them out from negative states. For a complete description
of DDF states, see elsewhere [43].

We suggest the read [52].

17Important thing to note that L†
m are not present in open strings. For closed string, we have L0 = L†

0.
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3.2 Fadeev-Popov Ghosts and BRST

Ghosts (mainly good ones) are sometime necessary in order to fix the gauge which is also known as
“gauge fixing”. We have to introduce these kinds of ghosts through adding extra fields, which we
call ghosts fields. One of them is Fadeev-Popov ghost, mainly due to Fadeev and Popov [53]. This
ghost is necessary to maintain the path integral formulation of string theory. For a string theory,
we write the Euclidean path integral

Z =

∫
D[h(σ)] D[X(σ)]e−S[h,X], (3.23)

where S is action (3.4) and
∫
D[h] includes integral over three components h++, h−−, and h+−.

The gauge choice
hαβ = eϕηαβ, (3.24)

then comes the gauge fixing, as described in 2.1. What comes after this is we use the equations for
δh++ and δh−−, we have the famous identity (see [6] for clarity)

1 =

∫
Dg(σ)δ

(
hg++

)
δ
(
hg−−

)
det
(
δhg++/δg

)
det
(
δhg−−/δg

)
(3.25)

and insert it to the path integral, we gain

Z =

∫
Dg(σ)

∫
Dh(σ)DX(σ)e−S[h,X]δ

(
hg++

)
δ
(
hg−−

)
det
(
δhg++/δg

)
det
(
δhg−−/δg

)
. (3.26)

Because of the reparametrization invariance of S(h) = S(hg), we can write hg = h′ and h to g.
Thus, our gauge fixed path integral is

Z =

∫
Dh′(σ)DX(σ)e−S[h′,X]δ

(
h′++

)
δ
(
h′−−

)
det
(
δh′++/δg

)
det
(
δh′−−/δg

)
. (3.27)

Where do we need ghosts? Which are most of the time unphysical. Since (3.27) is gauged, it will
contain many irrelevant states in it. We need to distinguish the physical configurations and gauge
orbits in them. That is where we introduce ghosts (which naturally arise). In this very case of
gauge theory, one has to work with Fadeev-Popov ghosts. It must be noted out that not every gauge
theory needs to be ghosted with Fadeev-Popov; for instance, take QED, where no Fadeev-Popov
ghosts play any part.

To tackle
∫
Dh′ in (3.27), we introduce two anti-commuting variables - ghost variables, ghosts

and anti-ghosts. Anti-commuting property of these ghosts make call them as Grassmann variables
and integrals over them is called Berezin integral. So we introduce ghost c− (c+) and anti-ghost
b−− (b++) in determinants as in [43]

det
(
δh′++/δg

)
=

∫
Dc−(σ)Db−−(σ) exp

{
− 1

π

∫
d2σc−∇+b−−

}
,

det
(
δh′−−/δg

)
=

∫
Dc+(σ)Db++(σ) exp

{
− 1

π

∫
d2σc+∇−b++

}
,

(3.28)
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and inserting these determinants in (3.27), one get the action with ghosts which solves our problem
of the section. But now in our fock space of spectrum states, we have added ghosts and anti-ghosts.
We need to differentiate at this junction also. There comes BRST Formalism.

BRST quantization is a quantization of BRST charges, however, we only want to know how to
differentiate between a state-alike ghost and state itself. In order to that, we need to setup few
things. We will consider a Virasoro Algebra, however it will be valid for any Lie Algebra G. We
construct some symmetry operators (which forms the representation of G)

[Ki,Kj ] = fkijKk, (3.29)

where fkij is structure constant. We now include ghosts and anti-ghosts, ci and bi respectively,
which follow {

bj , c
i
}
= δij . (3.30)

We now have to talk about representation theory of G(and later the cohomology of G). Ghosts
transform in the dual of adjoint representation and anti-ghosts transform in the adjoint represen-
tation of G. One then can define the ghost number U

U =
∑
i

cibi. (3.31)

We can now say the BRST operator is

Q = ciKi −
1

2
fij

kcicjbk, (3.32)

which is a nilpotent of index 2, hence
Q2 = 0. (3.33)

We need to find the states which are invariant under this operator; that is, for state Ψ, we can
write

QΨ = 0, (3.34)

where Q generates the cohomology of G. It is natural to expect that physical states are cohomology
classes of the group. One can now ask about the ghost numbers for which physical states can be
found. The most straightforward answer is U = 0, because there will be no ghosts and anti-ghosts
present. However, it depends on the G.

If one now do this for Virasoro Algebra, the BRST operator is (for open strings18)

Q =

∞∑
−∞

:

(
L
(α)
−m +

1

2
L
(c)
−m − aδm

)
cm : (3.35)

U =

∞∑
−∞

: c−mbm : . (3.36)

Of course, Virasoro algebra brings an anomaly as expected. But turns out that it can be easily
solved if D = 26, a = 1 and Q2 = 0. It also turns out that physical states in the bosonic string
theory are BRST cohomology classes of ghost number −1

2 [43].

18For closed strings, both right and left-moving modes will be added.
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3.3 Other Basics

The energy spectrum of on-shell states or physical states is an important area of study. One has
theorems like the No-Ghost theorem, which implies the presence of no ghosts in a perfectly stable
model. DDF states generate a spectrum. The gain in no-ghosts algebra is now Lorentz invariance
of covariant formalism ensures that no super-conformal ghosts are present in the physical Hilbert
space. DDF operators Ai where i runs over usual transverse numbers. They commute with Virasoro
generators

[Lm, A
i
n] = 0. (3.37)

The states that we gain from light-cone gauge - which are physical, free from bad ghosts, and comes
from positive-definite Hilbert space - can be represented in multiples of SO(D − 2), however one
finds that massive states must be multiples of SO(D− 1). For D = 26, SO(24) and SO(25) rotate
to each other.

String theory classical action can be quantized by - famously - canonical quantization and path-
integrals (Polyakov integral). In both means, one finds that algebra for bosonic string theory that
is generating when

D = 26, a = 1, (3.38)

is entirely transverse, free from negative-norms, with many decoupled zero-norms, and is suited
for many physical calculations. We call these specific dimensions “Critical dimensions”. One can
prove it by using the Lorentz-invariance and check if the action is Lorentz (Poincare) invariant at
a particular dimension. However, we can have positive spectrum for D ≤ 26 and a ≥ 1.

An open string is of two kinds; oriented and unoriented. Basically, an open string has an arrow
depicting the direction, and if the endpoints are changed, then the direction is inverted, called an
oriented, open string. If it is otherwise, we call it an unoriented open string - similar definitions for
closed strings. We have extended Shapiro-Virasoro algebra for oriented closed strings and restricted
Shapiro-Virasoro algebra for unoriented closed strings.

(a) (b)

Figure 3.2: Open strings; (a) An oriented open string has distinguished charges at the end (e and
e) and (b) an unoriented open string has no distinguished end charges.

Summary: It, of course, cannot be summed up here. Nonetheless, string theory is just like
any other quantum field theory with restrictive algebra for oscillating string-like objects. We find
that the most smooth of them is found when D = 26 and a = 1. The works in string theory, mainly
Dual Models and M-theory, have made the field what it is today. It will be exciting to see in the
future how this field evolves.
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4 Conformal field theory

Conformal field theory is a branch of theoretical physics that studies quantum field theories with a
specific type of symmetry called conformal symmetry. Conformal symmetries involve scale trans-
formations (changes in length scales) and special conformal transformations (a combination of
translations and inversions). In addition to these transformations, CFTs also respect the usual
Poincaré symmetries (translations, rotations, and Lorentz boosts).

CFT gained significant attention around 1984 due to its crucial role in string theory. String
theory is a theoretical framework that aims to unify all fundamental forces of nature by considering
the fundamental building blocks as one-dimensional ”strings” rather than point particles. Confor-
mal symmetry is particularly important in string theory as it helps describe the behavior of strings
consistently across different scales.

Conformal field theory is also essential in the field of statistical physics, especially for under-
standing critical phenomena. Critical phenomena occur near phase transitions, where the behavior
of a physical system changes dramatically as it approaches a critical point. CFT provides a pow-
erful tool for describing and solving these critical behaviors, especially in two dimensions. One of
the remarkable features of conformal field theory is that some CFTs are solvable exactly in two
dimensions. This means that their properties and behavior can be completely determined without
approximations, making them valuable tools for studying physical systems in different contexts.

The mention of AdS/CFT correspondence refers to a groundbreaking duality proposed in the-
oretical physics. It connects two seemingly disparate theories: conformal field theories in lower
dimensions and string theories or higher-dimensional gravity theories in anti-de Sitter (AdS) space-
time. This correspondence has opened up new avenues for understanding and solving problems in
both theories, and it has sparked renewed interest in the study of conformal field theories.

We shall commence by undertaking a comprehensive examination of the Poincaré group, which
encapsulates the symmetries inherent to spacetime. Gradually advancing our discourse, we shall
endeavor to augment this group by incorporating the realm of conformal transformations. Subse-
quently, our attention will be directed toward the meticulous computation of certain correlation
functions within the purview of the theory.

4.1 Poincaré algebra

The Poincaré algebra is a fundamental mathematical structure that captures the symmetries of
spacetime in special relativity. It provides a mathematical framework for describing the symmetries
of translations, rotations, and Lorentz boosts, which are the basic transformations that leave the
laws of physics unchanged in special relativity.

The Poincaré algebra is defined by a set of generators and commutation relations. The genera-
tors correspond to the various symmetry operations, and the commutation relations describe how
these generators interact with each other. In four-dimensional spacetime, the Poincaré algebra has
ten generators, which can be organized into four translations, three rotations, and three boosts.
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xµ → Λµ
νx

ν + aµ (4.1)

where Λµ
ν is an element of the Lorentz group of rotations and boosts satisfying

Λµ
ρΛ

ν
σηµν = ηρσ (4.2)

and aµ is an element of translation subgroup. The general form of an infinitesimal Lorentz trans-
formation in terms of the generators is:

Λµ
ν ≈ δµν − i

2
ωαβ(J

αβ)µν (4.3)

where ωαβ is the infinitesimal antisymmetric parameter associated with the generators. The Jαβ

are the generators of the Lorentz group.

In the context of o(d−1, 1) and O(d−1, 1), the generators (Jαβ)µν are the components of the Lie
algebra associated with the Lorentz group O(d− 1, 1), which is the group of linear transformations
that preserve the Minkowski spacetime interval. The generators of the Lorentz group, denoted as
(Jαβ)µν , can be expressed in terms of η as:

(Jαβ)µν = i(ηµαδβν − ηµβδαν ). (4.4)

which satisfies the commutation relation:

[Jαβ, Jγδ] = i(ηαγJβδ − ηαδJβγ − ηβγJαδ + ηβδJαγ). (4.5)

These commutation relations reflect the algebraic structure of the Lorentz group, which is essential
in the study of spacetime symmetries and the behavior of tensors, vectors, and spinors under
Lorentz transformations in special relativity.

In field theory, the generators of the Poincaré group (which combines translations and Lorentz
transformations) are realized as differential operators acting on fields. To derive the representation
for a scalar field ϕ(x), we can start by considering an infinitesimal Lorentz transformation in the
active picture.

In the active picture, the Lorentz transformation acts on the fields themselves, as opposed to
transforming the coordinates. An infinitesimal Lorentz transformation can be written as:

Λµ
ν = δµν + iωµ

ν , (4.6)

where δ is the Kronecker delta and ωµν represents the infinitesimal anti-symmetric Lorentz
transformation matrix. In the infinitesimal limit, ωµν is small, and we can write:

ωµ
ν ≈ −1

2
Jµ

ν , (4.7)

19



Now, let’s derive the representation of the Lorentz generators acting on a scalar field ϕ(x). We
want to find how ϕ(x) changes under an infinitesimal Lorentz transformation:

ϕ′(x) = ϕ(x) + iωµ
ν J

µνϕ(x). (4.8)

We can simplify this expression by using the generators you provided earlier:

ϕ′(x) = ϕ(x) + iωµ
ν (i(η

µαδβν − ηµβδαν ))ϕ(x),

ϕ′(x) = ϕ(x) + ωµ
ν (η

µαδβν − ηµβδαν )∂αϕ(x).
(4.9)

Now, let’s define the infinitesimal Lorentz transformation operator as an operator acting on
ϕ(x):

Λ̂(ω) = 1 + ωµ
ν (η

µαδβν − ηµβδαν )∂α. (4.10)

This operator represents an infinitesimal Lorentz transformation. The generator of this transfor-
mation is related to the Jµν generators:

Ĵµν = i(ηµαδβν − ηµβδαν )∂α. (4.11)

In the context of field theory and the Poincaré group, you can define the translation generator,
often denoted as Pµ, as the differential operator associated with spacetime translations. The action
of the translation generator on a scalar field ϕ(x) is given by:

(Pµϕ)(x) = −i∂µϕ(x). (4.12)

The commutation relations for the Poincaré algebra are:
Translations:

[Pµ, P ν ] = 0, (4.13)

Lorentz Transformations:

[Jµν , Jρσ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ), (4.14)

Mixed Commutation (Translations and Lorentz Transformations):

[Pµ, Jνρ] = i(ηµνP ρ − ηµρP ν), (4.15)

4.2 Conformal algebra

4.3 Conformal theories

Theories without scales or dimensionful parameters are classically scale invariant. A simple example
is the scalar field with only quartic interaction
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S =

∫ (
(∂ϕ)2 − λ

4!
ϕ4
)
d4x (4.16)

In this expression, ϕ represents the scalar field, and λ is a dimensionless coupling constant associated
with the quartic interaction term, where the action remains invariant under simultaneous rescaling
of spacetime coordinates and the field with specific weights, is known as ”conformal invariance” or
”scale invariance with a specific weight.” In this context, a scale transformation involves multiplying
both spacetime coordinates and the field by the same factor, and the requirement of a specific weight
indicates how the field’s rescaling is related to the rescaling of coordinates.

Space and Time Coordinates Scaling:

x→ λx

t→ λt
(4.17)

Field Scaling:
ϕ(x, t) → λ∆ϕ(λx, λt) (4.18)

Here, λ is the scaling factor, and ∆ is the specific weight associated with the field’s rescaling. For
the action to remain unchanged, you need to find the appropriate value of ∆ that satisfies this
condition.

4.4 Energy-momentum tensor

Noether’s theorem relates continuous symmetries of a physical system to conserved quantities.
In the context of spacetime translations, the associated conserved current is indeed the energy-
momentum tensor, often denoted as Tµν . This tensor represents the density and flux of energy and
momentum in a system.

The energy-momentum tensor can indeed be defined in terms of the action of a physical theory.
Specifically, it is defined as the variation of the action with respect to the metric tensor gµν . The
action S is a functional that depends on the spacetime metric gµν and the fields of the theory:

S =

∫
d4xL(gµν , ϕ) (4.19)

Here, L is the Lagrangian density, ϕ represents the fields of the theory, and d4x is the spacetime
volume element.

The energy-momentum tensor Tµν is defined as the functional derivative of the action with
respect to the metric:

Tµν = − 2√
−g

δS

δgµν
(4.20)
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Here, δS/δgµν represents the functional derivative of the action with respect to the metric tensor
gµν , and

√
−g is the determinant of the metric tensor.

The energy-momentum tensor Tµν encodes information about the distribution of energy, mo-
mentum, and stress in the system. It has a number of important properties, such as being symmetric
(Tµν = Tνµ) and satisfying the conservation law ∇µTµν = 0, where ∇µ is the covariant derivative.

The conservation law ∇µTµν = 0 is a consequence of Noether’s theorem applied to spacetime
translation symmetry. It states that the total energy momentum within any closed region of
spacetime is conserved, which is a fundamental principle of physics.

We would arrive at the same result by considering the conserved currents for the dilation which
is given by:

J(D)µ = xνTµν , (4.21)

This current is conserved, meaning that its divergence ∂νJ(D)µ is zero.

4.5 Correlation functions

In conformal field theory (CFT), correlation functions play a central role as they encode important
information about the theory. Conformal symmetry imposes strong constraints on the form of these
correlators. Let’s consider a two-point correlation function of scalar fields ϕ(x) in a CFT:

⟨ϕa(x1)ϕb(x2)⟩ = Cab
1

|x1 − x2|∆a+∆b
, (4.22)

where ∆a and ∆b are the scaling dimensions of ϕa and ϕb, respectively, and Cab is a constant
that depends on the normalization of the fields. For a non-zero correlation to exist (Cab ̸= 0),
the scaling dimensions of the fields must be equal (∆a = ∆b). Similarly, consider a three-point
correlation function involving three quasi-primary fields ϕa(x1), ϕb(x2), and ϕc(x3):

⟨ϕa(x1)ϕb(x2)ϕc(x3)⟩ = Cabc
1

|x12|∆a+∆b−∆c |x23|∆b+∆c−∆a |x13|∆c+∆a−∆b
, (4.23)

The two and three-point correlation functions in a conformal field theory (CFT) are indeed highly
constrained by conformal symmetry and are essentially fixed, up to overall integration constants, by
the algebraic and geometric properties of the CFT. However, the situation changes when considering
four-point correlation functions and higher-order correlators. In higher-order correlators, such as
four-point functions, conformal symmetry alone is not sufficient to completely determine their form.
The reason for this is the emergence of additional degrees of freedom, often referred to as ”crossing
symmetry” or ”crossing relations.”

4.6 Ward Identities

TheWard identity associated with translation invariance, which is one of the fundamental spacetime
symmetries, is a specific case of Ward identities in conformal field theory (CFT). In this context,
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translation invariance corresponds to the special case of conformal transformations where only pure
translations are considered. The Ward identity for translation invariance relates the correlation
functions of conserved currents to the correlation functions of the fields themselves.

The Ward identity for translation invariance is often expressed as follows:

∂µ⟨Jµ(x)O1(y1, y2, . . .)⟩ = −i
∑
i

⟨∂µO1(y1, y2, . . .)⟩, (4.24)

where, O1(y1, y2, . . .) represents a collection of fields or operators in the correlation function. The
right-hand side sums over all the fields O1(y1, y2, . . .) in the correlation function and computes the
derivative of each field with respect to its spacetime coordinate yi.

5 The Conformal Group in Two Dimensions

The conformal group in two dimensions often denoted SL(2,C), is a group of coordinate transforma-
tions that preserve angles and ratios of infinitesimal distances on a two-dimensional manifold, such
as the complex plane. Conformal transformations are particularly important in two-dimensional
conformal field theory (CFT) and have numerous applications in physics and mathematics.

5.1 Conformal Mappings

We consider the coordinates (z0, z1) on the plane. Let’s denote the contravariant metric tensor in
the original coordinate system as gij , and in the new coordinate system as g′ij . The transformation
of the contravariant metric tensor under a change of coordinates zi → wi(x) can be expressed as
follows:

g′ij(x) =
∂wi

∂za
∂wj

∂zb
gab(z), (5.1)

where a and b run over the indices of the original coordinate system, and i and j run over the
indices of the new coordinate system. In this context, z typically represents a complex coordinate,
and z̄ is the complex conjugate of z. This change of coordinates is commonly used in complex
analysis and in the study of conformal transformations. The translation rules for these coordinates
can be described as follows:

1. Translation from Cartesian to Complex Coordinates:

z = z0 + iz1

z̄ = z0 − iz1
(5.2)

Here, z is a complex number, and z̄ is its complex conjugate. This transformation allows you to
represent points in the Cartesian (z0, z1) coordinates using complex numbers.
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2. Translation from Complex to Cartesian Coordinates:

z0 =
1

2
(z + z̄)

z1 =
1

2i
(z − z̄)

(5.3)

These equations allow you to express the complex coordinates z and z̄ in terms of the Cartesian
coordinates (z0, z1).

5.2 Global Conformal Transformations

Global conformal transformations, also known as global conformal mappings, refer to mathematical
transformations that preserve angles and distances on a global scale. These transformations are
typically used in complex analysis and differential geometry to study how complex functions map
one region of the complex plane to another while maintaining the conformal (angle-preserving)
property.

In two dimensions (the complex plane), a global conformal transformation is a bijective (one-to-
one and onto) mapping f : C → C that is holomorphic (analytic) and satisfies the Cauchy-Riemann
equations. Such transformations can be represented by functions of the form:

f(z) =
az + b

cz + d
, (5.4)

where a, b, c, d are complex constants with ad− bc ̸= 0.

These transformations are important in various areas of mathematics and physics, including
complex analysis, Riemann surfaces, and the study of conformal field theories in theoretical physics.

5.3 Virasoro Algebra

The Virasoro algebra is a specific infinite-dimensional Lie algebra that plays a central role in the
study of conformal field theories (CFTs) in theoretical physics, particularly in two-dimensional
CFTs. It is closely related to the Witt algebra, as mentioned earlier, but includes an additional
central charge term. The Virasoro algebra is named after its discoverer, the physicist Miguel Ángel
Virasoro.

The generators of the Virasoro algebra are typically denoted as Ln, where n is an integer. The
commutation relations for these generators are given by:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0

(5.5)
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In this commutation relation, c is called the central charge, and δm+n,0 is the Kronecker delta
function, which equals 1 if m+ n = 0 and 0 otherwise.

The Virasoro algebra contains two key types of generators:

1. Diffeomorphism Generators (Ln): These generators are responsible for infinitesimal
coordinate transformations or diffeomorphisms on the complex plane in a conformal field theory.
They encode how fields transform under scale transformations and reparametrize the spacetime
coordinates.

2. Central Charge (c): The central charge term is a crucial part of the Virasoro algebra. It
gives rise to the so-called ”central extension” of the Witt algebra. The value of c is a fundamental
parameter of the conformal field theory and affects its properties. The central charge measures the
degree of deviation from pure conformal symmetry. Different values of c lead to different types of
CFTs, such as minimal models or non-minimal models.

In two-dimensional conformal field theories, the Virasoro generators act on the fields of the
theory, and their commutation relations capture the transformations that preserve the conformal
symmetry. These generators are associated with the scaling, translation, and reparameterization
of spacetime coordinates.

6 Entanglement Entropy

The study of the entanglement content of many-body quantum systems has indeed led to signifi-
cant insights into these systems, particularly concerning criticality and topological order. When a
quantum system is in its ground state or any pure state, understanding the entanglement between
its constituent parts can provide crucial information about the system’s properties and behavior.
This understanding is often quantified using entanglement entropies. Let ρ be the density matrix
of a system, which we take to be in a pure quantum state |Ψ⟩ so that ρ =

∑
i pi|ψi⟩⟨ψi|. For a

composite quantum system consisting of subsystems A and B, the Hilbert space be written as a
direct product H = HA⊗HB, and we can obtain the density matrix for subsystem A, ρA = TrB(ρ).
The entanglement entropy is the corresponding von Neumann entropy

SA = −Tr(ρA log(ρA)) (6.1)

When ρ corresponds to a pure quantum state SA = SB. Other standard measures of bipartite
entanglement in pure states are the Renyi entropies:

S(n)(ρA) =
1

1− n
log (Tr(ρnA)) , (6.2)

that also satisfy S
(n)
A = S

(n)
B whenever ρ corresponds to a pure quantum state. When n is close

to 1, the Rényi entropy gives similar information to the von Neumann entropy and captures the
dominant features of the entanglement structure. For n > 1, it emphasizes the contributions of the
more entangled states, while for n < 1, it is more sensitive to less entangled states.
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7 Random Matrix Theory

Random matrix theory (RMT) is a classic example of statistical group theory in general physics.
The most recent development for RMT is the equivalence of JT gravity with RMT [54]. From the
correspondence of AdS/CFT, one learned that a bulk theory with gravity lives on the boundary of
a quantum system. However, the equivalence of JT gravity is not given to a boundary theory (or a
bulk theory). In fact, RMT shares the correspondence with JT gravity; hence JT gravity is a dual
to random matrix integral of Hamiltonian H, where H is a random matrix.

JT gravity [55] is not part of the present discussion of the paper. However, a very brief summary
follows. String theory aims to understand gravity in higher dimensions. Kaluza-Klein theory tries
for five dimensions, but how would gravity theories look in 2 dimensions? That is answered by JT
gravity which operates gravity in 2 dimensions. Recently, many developments have been made in
JT gravity, especially its relation to a random matrix integral [54,56,57].

RMT is mainly concerned about the statistics of groups, at least for us, whose applications
are wide in physics. It is a fascinating fact that RMT is not only for physics but for many other
subjects19.

Consider a matrix M, from linear algebra we know that M holds eigenvalues mij (for 2 × 2
matrix). Suppose the elements of matrix M are random variables, to which we say to obey some
specific outlined properties. In that case, the study of those (mij) eigenvalues is called the “random
matrix theory” problem. Now one can ask what the practical application of RMT is. Actually,
there are many practical applications, consider the well-studied example of the nucleus using these
random matrices, which was developed by Wigner (and Dyson). And the recent example of the
success of RMT is JT gravity. We suggest the reader to [58].

The most interesting and simple case of the matrix is Hamiltonian. We consider a Hamiltonian
H of a system20. From matrix theory, H is also a matrix and random variables of Hij yield random
eigenvalues Eij . Hamiltonian matrices are normal at low-energy levels, but finding the numbers
becomes a hard task with precision at high-energy levels, so we say that those numbers under
some symmetry requirement are random variables and are subject to random matrices. One can
immediately realize that random variables are the perfect key of chaotic systems (see [59]), where
a minor change in the initial condition results in a major change in the final condition. Back to
the subject, why do we need to understand random variables of H in this case?

The answer is trivial and supported by the fact of statistics. When we study any RMT -
we basically - try to understand how the system would look under random changes or random
variations. These random changes are not wholly arbitrary but are confined under some specific
outline. These random matrices can be types of orthogonal matrices, symplectic matrices, or
unitary matrices. They can either obey ‘Gaussian distribution’ or ‘circular distribution.’

A random matrix can be from any one of 10 classes. These classes are also called ensembles.
Among 10 ensembles, three are Dyson ensembles and seven are Artland-Zirnbauer ensembles [60].

19Like sociology.
20In the primitive examples, the system was a nuclear theory.
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Dyson ensembles are simple symmetry ensembles of Gaussian nature. Three Dyson ensembles are
Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE), and Gaussian sym-
plectic Ensemble (GSE). In the original theory of random matrices in nuclear physics if Hamiltonian
H is assumed without time-reversal symmetry, then the random theory is of GUE. (Anti-unitary is
linked to time-reversal). If the time-reversal is assumed, then the simple that happens is that U(n)
reduces to subgroup O(n) if T2 = 1 and Sp(n) if T2 = −1. Where H i

j are hermitian random ma-
trices and i, j runs over n. O(n) matrices are symmetric (Hij = Hji) and Sp(n) matrices take the
form H i

j = ϵikHk
j , where ϵ

ik is anti-symmetric tensor. The other seven Artland-Zirnbauer classes
are divided into two parts;

1. For the 4 cases, we have covariant (or contravariant) indices Hij . If the group is U(n), then
Hij can either be a symmetric tensor or anti-symmetric tensor. If O(n) is considered, then
H can be an anti-symmetric and for Sp(n), it will be a symmetric tensor.

2. The last 3 cases are for product groups O(n) × O(n), U(n) × U(n) or Sp(n) × Sp(n). We
can also introduce a number c such that the product group is O(n)×O(n+ c) and so on for
different product groups; in doing so, we make our H to be bifundamental where one index
will transform under the first group and another index under the second one.

Random matrices have become quite active in field theory calculations, mainly in condensed
matter calculations. The broader aspect of random matrices can be experienced in models like
SYK (Sachdev-Yao-Kitaev), JT gravity, and Black Holes [61]. It is a game of patience to see where
random matrix theory proceed.

A Anti-De Sitter Space

Anti-De Sitter (AdS) is a geometrical solution to Einstein’s equation of general relativity. Its
counterpart is de-Sitter space (dS), which is actually a higher-dimensional positive scalar curved
manifold. Positive scalar curvature indicates that the Λ (cosmological constant) is positive. We
represent dS space with dSn, where n implies that dS is Lorentzian analogue of n spheres. More-
over, it is also the solution to general relativity (GR), which is a maximally symmetric theory.
Furthermore, anti-de Sitter space is the anti-analog of de-Sitter. Anti-de Sitter has negative scalar
curvature (Λ < 0).

AdS are of high interest in theoretical physics, see for example [62,63], which showed that AdS
is a theory living on the boundary of the conformal theory. This is what we called “AdS/CFT
Correspondence”. It is in contrast to JT gravity and SYK models, discussed in section 7, which
are dual to ensembles.
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Figure A.1: The topology of AdSd as embedded into flat space-time of d+1 dimensions.

A.1 Geometry

As we noted out that AdS is a solution to GR, then it must be rich in geometry. The geometry of
AdS is too topologically relativistic at first sight. We first observe that the solution to GR action,
in this case, is given by

S =
1

16πGN

∫
dd+2x

√
−g(R− 2Λ), (A.1)

=
1

16πGN

∫
dd+2x

√
−g
(
R+

(d+ 1)d

L2

)
, (A.2)

which further lead to the solution for the cosmological constant;

Rµν = −d+ 1

L2
gµν , (A.3)

R = −(d+ 1)(d+ 2)

L2
, (A.4)

Λ = −(d+ 1)d

2L2
. (A.5)

Moreover, AdS can be defined for d ≥ 2. The geometry of AdS can be compacted as a hypersurface21

into a Euclidean space. For instance, a 4d AdS is a hypersurface in a 5d flat space with three spatial
and two-time dimensions, where the AdS has three spatial and one time dimensions. Fig. (A.1)
closely captures such topology. So, AdS can be seen as a Lorentzian analog of a sphere that can
be visualized as embedded into a flat space-time. Note that the extra dimension is timelike, not
spacelike. For R3,2, we write the metric as (in −,−,+,+,+)

ds2 = −dP 2 − dQ2 + dX2 + dY 2 + dZ2, (A.6)

where P and Q are timelike dimensions and X,Y and Z are spacelike dimensions. AdS follow this
immediately for 4d hypersurface in R3,2, which is given by

−P 2 −Q2 +X2 + Y 2 + Z2 = −a2, (A.7)

21Hypersurface is a manifold that generalizes the hyperplane and surface. It can be seen as an embedded geometry
into some Euclidean space or, for that matter, the affine-connected spaces. A “d” dimensional AdS exists in “d+ 1”
plane. (A hypersurface is also a sub-manifold of codimension 1.)
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Figure A.2: Penrose diagram of AdS, where time will be on boundary.

where a is the curvature scale of AdS and has dimensions of length. Eq. (A.7) is also dubbed as
an equation for hyperboloid.22 When there are no time dimensions at all, then the anti-de sitter
space shows complete hyperboloid behavior. If the timelike dimension is one, then it shows the
Lorentzian signature (quasi-sphere).

Another point to note is that the Penrose diagram for AdS is a cylinder - fig A.1 - so for an
observer along the geodesic line, a particle can go to boundary and come back in finite time, see [64]
where it has been described using causal paths and Penrose diagrams.

The isometry group of AdS4 space is SO(4, 2). And the isometries of AdS are in one-to-one
correspondence with the generators of the conformal group; that is another way of saying AdS is
dual to CFT.

A.2 Duality

We have mentioned the duality several times in the paper, but what exactly, however in vague
terms, this duality means? (For full description, we refer to [15].) String theory is categorized
into five parts, namely Type I, Type IIA, and Type IIB, 11D Supergravity, SO(32) Heterotic, and
E8 × E8 Heterotic. And the simplest correspondence one can take is AdS5 × S5 and N = 4 SYM,
where string theory IIB is compactified on AdS5 × S5. Important idea to stress is, what we say,
that N = 4 SYM lives on the boundary of AdS5 × S5, however, IIB lives on AdS5 × S5.

B T T̄ Deformations and Bulk

In this little disconnected appendix, we would review some of the latest developments in T T̄
deformations (or T 2 in d > 2).
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