
CHAPTER 5

Homological Algebra

“For my own sake, I have made a systematic (as yet unfinished) review of
my ideas of homological algebra. I find it very agreeable to stick all sorts
of things, which are not much fun when taken individually, together under
the heading of derived functors.”
- Alexander Grothendieck (in his letter to Serre)

5.1. Homological algebra was the most important development by Grothendieck, for ex-
ample in his Tohuku paper. Our goal in this chapter is to discuss homological algebra in
the context of EGA seminars. Of course, some of the material here might be very familiar
to you. We will discuss the abstract idea behind chain complexes and them being valued in
any category. We will introduce homotopy and chain maps in this chapter. Our focus will
be to introduce the homotopy category of chain complexes and do some basic discussions
about derived categories as well. Derived functors are discussed as well1.

1. Short Exact Sequences and Chain Complexes

5.2. Most of the focus on abelian categories are given because they admit short exact
sequences

0
f1→↑ A

f2→↑ B
f3→↑ C ↑ 0 (3)

such that at each point, it is ‘exact’ which means that ker(fn+1) = im(fn) and also notice
that fn+1 ↓ fn = 0.

5.3. With the above definition, we have following examples

(1) A sequence 0 ↑ V
f→↑ W is exact if f is injective.

(2) A sequence V
f→↑ W ↑ 0 is exact if f is surjective.

(3) A sequence 0 ↑ V
f→↑ W ↑ 0 is exact if f is an isomorphism.

1
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14 5. HOMOLOGICAL ALGEBRA

(4) A sequence 0 ↑ V
f→↑ W

g→↑ U ↑ 0 is exact if f is injective, g is surjective and
ker g = im f .

(5) Given V
f→↑ W , the following is always exact

0 ↑ ker f
i→↑ V

f→↑ W
q→↑ cok f ↑ 0 (4)

then ker q = im f and ker f = im i.

Definition 5.4. A chain complex is defined as a sequence

· · · ↑ Cn+1
dn+1→→→↑ Cn

dn→↑ Cn→1
dn→1→→→↑ · · · (5)

where the fn ↓ fn+1 = 0. The maps dn are called di!erentials.

For example, for R→Mod, it is a family of R→Mod, {Cn}n↑Z where Cn ↔ R→Mod.

5.5. We can define the kernel of dn to be the module of n-cycles in R →Mod, denoted by
Zn(C•). Again, we can define image of dn to be the module of n-boundaries in R → Mod,
denoted by Bn(C•). It is clear to see that

0 ↗ Zn ↘ Bn ↘ Cn (6)

Alternatively, ker(fn+1) ↗ img(fn).

5.6. For a chain complex to be exact, we just mention that Zn = Bn for some chain complex
C•.

Definition 5.7. When a chain complex fails to be exact, which means that Zn/Bn is
non-trivial quotient group. This guotient group is called ‘Homology’ Hn(C•).

This essentially measures by how much the chain complex fails to be ‘exact’ at n.

5.8. Similarly, one can define cochain complexes and cohomology groups for them. These
are dual descriptions.

Example 5.9. Now we will look at a very interesting example of . Given V,W in V ectk,
the sequence

0 ↑ V
i1→↑ V ≃W

ω2→↑ W ↑ 0 (7)

where i1 : V ↑ V ≃W is an inclusion map and ω2 : V ≃W ↑ W is a projection map, the
above sequence (7) is an exact sequence since ker(ω2) = im(i1). This sequence will serve as
a canonical example of split sequences.

Definition 5.10 (Split Sequence). A short exact sequence

0 ↑ V
f→↑ W

g→↑ U ↑ 0 (8)

is said to be split if ⇐ g
↓ : U ↑ W such that g ↓ g↓ = 1U

0 V W U 0
g

g↑
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For example, the below sequence splits

0 V V ≃W W 0
i1 ω2

i2

We have the following proposition.

5.11. A short exact sequence

0 ↑ V
f→↑ W

g→↑ U ↑ 0 (9)

is said to be split if ⇐ f
↓ : W ↑ V such that f

↓ ↓ f = 1V . So both are equal definitions
which means that for our example, the existence of i2 implies the existence of ω1. These are
statements of left split and right split in the Splitting Lemma. In general, the existence of
g
↓ will imply that f ↓ exists. To see if this is true, we can look at the following diagram

0 V W U 0

0 V V ≃ U U 0

f g

(
f ↑
g

)

i1

(f g↑)

ω2

where (f g
↓) is an isomorphism and the diagram must commute.

We suggest that the

0 ↑ V
i1→↑ V ≃W

ω2→↑ W ↑ 0 (10)

is the canonical example of a split sequence. Any s.e.s. which is isomorphic to above
sequence (10) is also a split sequence.

2. Chain Complexes and Chain Maps

Definition 5.12. We define a category of chain complexes Ch(A) with objects as chain
complexes, where the morphism are chain complex maps. Given two chain complexes C•, D•,
we have a chain map u

· · · Cn+1 Cn Cn→1 · · ·

· · · Dn+1 Dn Dn→1 · · ·

un+1 un un→1

where each square commutes. It is an important fact that a chain map u : C• ↑ D• induces
a map Hn(C•) ↑ Hn(D•) since u sends boundaries Bn(C•) to boundaries Bn(D•) and cycles
Zn(C•) to cycles Zn(D•).
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Definition 5.13. We define splitting maps sn for some chain complex Cn as sn : Cn ↑
Cn+1 such that it is called a split chain complex if dn = dn+1 ↓ sn ↓ dn. If given two chain
complexes Cn and Dn with a chain map un : Cn ↑ Dn, we choose maps sn : Cn ↑ Dn+1

· · · Cn+1 Cn Cn→1 · · ·

· · · Dn+1 Dn Dn→1 · · ·

dCn+1

un+1

dCn

sn
un

dCn→1

un→1

dDn+1 dDn dDn→1

where the commutativity is given by d
D
n+1 ↓ un+1 = un ↓ d

C
n+1 and the chain map un =

dn+1 ↓ sn + sn→1 ↓ dCn .

5.14. When there exist splitting maps sn : Cn ↑ Dn+1 and a chain map un : Cn ↑ Dn

where un = dn+1 ↓ sn + sn→1 ↓ dCn , then u is called a null homotopic chain map. When given
two chain maps un, vn : Cn ↑ Dn, we call them null homotopic if their di!erence is

un → vn = dn+1 ↓ sn + sn→1 ↓ dCn
(11)

and the maps {sn} are called chain homotopy from u to v.

5.15. Furthermore, a chain map un : Cn ↑ Dn is a homotopy equivalence if there exists a
map vn : Dn ↑ Cn such that uv is chain homotopic to the identity on D and vu is chain
homotopic to the identity on C.

3. Snake’s Lemma

5.16. Snake’s Lemma is a powerful tool to create six term exact sequences from two short
exact sequences with a zero object. The proof of the lemma is usually a fun diagram chase.
A succinct proof is also available in the beginning of the movie It’s my turn, 1980. We will
focus on the heuristics of the lemma.

5.17. Given two row short exact sequences in an abelian category A, when we have a
commutative diagram

A B C 0

0 A
↓

B
↓

C
↓

a

f

b

g h

a↑ b↑

it gives us a six-term exact sequence

ker(f) ker(g) ker(h) coker(f) coker(g) coker(h)ε
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where ε : ker(h) ↑ coker(f) is a connecting homomorphism. If the morphism a is a
monomorphism, then ker(f) ↑ ker(g) is a monomorphism and if the morphism b

↓ is an
epimorphism, then so is coker(g) ↑ coker(h).

We obtain the exact sequence by expanding the commutative diagram which gives us a
sequence in shape of a ‘slithering snake’ [A visual diagram of the Snake!]

ker(f) ker(g) ker(h) •

• A B C 0 •

0 A
↓

B
↓

C
↓

• coker(f) coker(g) coker(h)

a

f

b

g h

a↑ b↑

The connecting homomorphisms ε are important in constructing long exact sequences in
homological algebra. The proof of the lemma is given by ‘diagram chasing’. The proof
requires two step: 1) constructing the connecting homomorphism and 2) proving exactness
at each point.

A detailed proof will be added in second draft of these notes (updated 05-Nov-25).

4. Abelian Categories and Homotopy Category of Complexes

Definition 5.18 (Pre-Additive Category). A category C is pre-additive if each morphism
set MorC(a, b) has the structure of an abelian group such that the composition

Mor(a, b)⇒Mor(b, c) ↑ Mor(a, c) (12)

is bilinear.

Definition 5.19. An object which is both a final object and an initial object in a pre-
additive category C is called a zero object and denoted by 0.

Definition 5.20 (Additive Category). We call a pre-additive category C additive category
if it admits finite bi-products2.

Definition 5.21 (Abelian Category). We call a category C abelian if it satisfies the fol-
lowing properties

(1) It is an additive category.

2
The finite products and fintie co-products coincide here
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(2) Kernels and their dual co-kernels exist.
(3) Every injective morphism is a kernel of its own co-kernel.
(4) Every surjective morphism is a co-kernel of its own kernel.

5.22. Essentially, an abelian category is an abstraction of the (basic) properties of category
of abelian groups. It is believed to be introduced by Buchsbaum [3] in 1955 as exact categories
and later standardized by Grothendieck in his Tohoku paper [4] using axiomatic approach.
However, the term ’abelian category’ was termed by Freyd [5].

Example 5.23. A good example of abelian category is category of representation of a
group Rep(G) or the module category of an artinian algebra ” over field k.

5.24. The most interesting reason for studying abelian categories is that they admit short
exact sequences that we have discussed above. In later parts of this project, we will be
interested to read more than exact sequences like triangles in triangulated categories.

5.25. We will digress to recall what is a quasi-isomorphism. When we want to just know
the homological information of the complexes and their equivalence.

Definition 5.26. A chain map of complexes u : C• ↑ D• in abelian category A is called
a quasi-isomorphism if the induced homology morphism u↔ = H

n(C•) ↑ H
n(D•) is an

isomorphism.

From homology point of view, two complexes C• and D• become distinguishable.

Example 5.27. For example, there exists a quasi-isomorphism among any two projective
resolutions (or injective resolutions) of same object.

Theorem 5.28. If a map u : C• ↑ D• is a homotopy equivalence, then it is a quasi-
isomorphism.

5.29. Note that a quasi-isomorphism is not always a homotopy equivalence.

Definition 5.30. Let A be an additive category, we define a homotopy category of chain
complexes K(A) as follows

• Objects: The objects of K(A) are chain complexes.
• Morphisms: For any two chain complexes C•, D• ↔ A, we define the set of morphisms
as the set of homotopy classes of chain maps from C• to D•

HomK(A)(C•, D•) = HomCh(A)(C•, D•)/ ⇑ (13)

where any two chain maps u, v are chain homotopic, then u ⇑ v.

5.31. Essentially, we can define a functor Ch(A) ↑ K(A) which is identity on the objects
and quotient projection on the morphisms. Moreover, K(A) is an additive category as well
as a triangulated category, however, it is not an abelian category in general.
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5.32. The rescue needed to do homological algebras for K(A), since it fails to be abelian
category, is provided by triangulated structure on it which contain distinguished triangles
from which we get a long exact sequence of homology groups. While K(A) is a ’nice’
category to work with homotopical settings. It fails to identify the quasi-isomorphisms and
that motivates the construction of derived categories.

5.33. The issue with K(A) being that it does not recognize homotopy equivalence which
are not quasi-isomorphism requires an abstract settings of ‘derived categories’. The goal is
then to construct a category where all quasi-isomorphisms become isomorphisms.

5.34. We define derived category D(A) for an abelian category A as the localization of the
homotopy category K(A) with respect to the class of all quasi-isomorphisms. A morphism
between complexes C• and D• is no more only class of chain maps. Instead using universality,
we have following roof diagram

C•
f⇓→ F•

g→↑ D• (14)

where f is a quasi-isomorphism and g is a morphism in K(A). In a sense, it is more natural
way to construct homotopy categories.

Derived categories are natural playground for derived functors, higher algebra, representa-
tion theory, and mathematical physics.

5. Mapping Cones and Triangulated Category

These sections are in progress (updated 05-Nov-25).

6. Homological Dimension

7. Derived Functors

8. More on Derived Categories


