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Discussion: After the times of dual resonance models [1–4] and establishment of bosonic string
theory, the search for supersymmetric string theory began. The mentions of string actions that
respected both fermionic and bosonic oscillators were ’out of the blue’ (as Schwarz put it [5]). In
a supersymmetric string theory, in addition to Xµ(σ, τ), we have spinor degrees of freedom, Dirac
spinors, and a ’zweibien’ field, which is necessary1. These spinor degrees of freedom are described
by D two-component spinors [7] which are

λµA(σ, τ) : A = 1, 2, (1)

which transforms like both world-sheet and vector (in space time) but not necessarily as a spinor,
for that we have another formalism which is more developed one [8, 9]. λ have anti-commutation
properties though, it is a boson operator. Again, in a new formalism of superstring fermions anti-
commutating operators are included. A problem arises for λ, as we now need two symmetries (local)
to time components for both vectors, i.e Xµ(σ, τ) and λµ. Using [10], it was solved with adding two
local supersymmetry to reparametrization invariant action

S = −T
2

∫
dσdτ ηµν

√
hhαβ∂αX

µ ∂βX
ν . (2)

We have a Rarita-Schwinger field ψAα [6,11,12], a field V α
a related to metric hαβ, and writing ρα

two dimensional Dirac spinors, our action becomes

S = −T
2

∫
dσdτ ηµνV

{
hαβ∂αX

µ ∂βX
ν + iV α

a λ̄
µρa∂αλ

ν + 2V α
a V

β
b ψ̄αρ

bρaλµ
(
∂βX

ν +
1

2
λ̄νψβ

)}
,

(3)
and this has the necessary supersymmetry requirement. In light-cone gauge, it can be written as

Sl.c.g = −T
2

∫
dσdτ

(
∂2αX

i + iλ̄iρα∂αλ
i
)
. (4)

For (3) we will have the transverse modes in terms of Xi and λAi. Before we write the mode
expansions for Xi, we want to know what are the representation of ρα (Dirac spinors)

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
(5)

and this will be our selected Majorana representation. We can now write equations of motion for λ(
∂

∂σ
− ∂

∂τ

)
λ2i = 0 (6)(

∂

∂σ
+

∂

∂τ

)
λi = 0, A = 1. (7)

1As in supergravity [6].
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We know the boundary conditions for X, boundary conditions for λ are as follows - derived from
(6,7)

λi(σ = 0, τ) = λ2i(σ = 0, τ) (8)

λi(π, τ) =

{
−λi(π, τ) for bosons

λi(π, τ) for fermions
(9)

we can see that for bosons, an extra minus sign is appearing whereas fermions doesn’t. This can
deduce that fermions should have normal mode expansions as X,

λ2i =
∞∑

h=−∞
dih e

−ih(τ−σ) (10)

λi =
∞∑

h=−∞
dih e

−ih(τ+σ) (11)

[dih, d
m
n ] = δh+n,0 δ

im (12)

and for bosons,

λ2i =
∞∑

k=−∞
bik e

−ik(τ−σ) (13)

λi =
∞∑

k=−∞
bik e

−ik(τ+σ) (14)

[bik, b
m
o ] = δk+o,0 δ

im. (15)

An important thing to note is because bosons have extra minus sign, k runs over half-integers
(±1/2,±3/2 · · · ) whereas j runs over all integers [5]. d and b are operators for fermions and bosons
respectively. α′(mass)2 in the boson sector would be

α′(mass)2 =
∞∑
n=1

αi−nα
i
n +

∞∑
k=1/2

kbi−kb
i
k − c = M, c =

1

2
(16)

and the necessity of c = 1/2 is for Lorentz invariance. It comes from the ground state which is
bi−1/2 |0〉 and of course, ground state would be massless vector. We generally write Lorentz generators
as

J ij = lij − i
∞∑
n=1

1

n

(
αi−nα

j
n − α′−nαin

)
(17)

where
lµν = xµpν − x′′pµ (18)

and we can change them to light-cone gauge. One important algebra in Lorentz consistencies (see [9])
is [

J i−, J j−
]

= 0. (19)

We now write the Lorentz generators for bosons sector related to (16)

J ij = lij − i

∞∑
n=1

1

n

(
αi−nα

j
n − α

j
−nα

i
n

)
+Kij

0

J i− = li− − i
(
p+
)−1 ∞∑

n=1

1

n

(
αi−nα

−
n − α−−nαin

)
+
(
p+
)−1 ∞∑

−∞
Kij
−nα

j
n

(20)
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and we set

J+− = l+− (21)

J i+ = li+ (22)

(we followed Schwarz notation from [5])

Kij
0 = −i

∞∑
k=1/2

(
bi−kb

j
k − b

i
−kb

i
k

)

Kij
m = −i

∞∑
k=−∞

bim−kb
j
k, m 6= 0

(23)

and

α−n =
1

2

∞∑
m=−∞

αin−mα
i
m +

1

2

∞∑
k=−∞

(k − n/2)bin−kb
i
k, n 6= 0 (24)

αi0 ≡ pi (25)

We can similarly write the algebra for the fermionic sector by changing the oscillators bik with
dih. With one difference being that c must set to c = 0 in (16) because we do not want negative
norm masses squared in the fermionic sector, and then the ground state should be massless. More
further, we see that (19) is only satisfied for this superstring in D = 10 [13], and it also implies the
tracelessness of Tµν , hence ghosts free.

In (16) the number of boson states and in a modified fermionic version of (16) the number of
fermion states are equal for M = 0, 1, 2, · · · , that is supersymmetry . Nevertheless, that is only sat-
isfied if the ground state is both Weyl (left-handed) and Majorana (real) spinor (and that provided).
Moreover, in such (dual) models, the scattering of Fermion-Boson and fermion-fermion is the same.
It is worth noticing that for D=4, the Weyl and Majorana requirement are equivalent. However,
the condition for Weyl and Majorana’s imposition on spinors in Minkowski space is cooperative in
D = 2. A detailed discussion is carried in [14].

This is not a very good model. One important caveat is even λ anti-commutes, they are not
Grassmann operators (and hence boson operators). A much more advanced covariant approach
and spinor model (where no “spin-statistics” paradox has been given place) formalism should be
(is already) adopted for supersymmetry in string theory [8, 15,16].
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